Metamath Proof Explorer


Theorem cpmatelimp2

Description: Another implication of a set being a constant polynomial matrix. (Contributed by AV, 17-Nov-2019)

Ref Expression
Hypotheses cpmat.s S = N ConstPolyMat R
cpmat.p P = Poly 1 R
cpmat.c C = N Mat P
cpmat.b B = Base C
cpmatel2.k K = Base R
cpmatel2.a A = algSc P
Assertion cpmatelimp2 N Fin R Ring M S M B i N j N k K i M j = A k

Proof

Step Hyp Ref Expression
1 cpmat.s S = N ConstPolyMat R
2 cpmat.p P = Poly 1 R
3 cpmat.c C = N Mat P
4 cpmat.b B = Base C
5 cpmatel2.k K = Base R
6 cpmatel2.a A = algSc P
7 1 2 3 4 cpmatpmat N Fin R Ring M S M B
8 7 3expa N Fin R Ring M S M B
9 1 2 3 4 5 6 cpmatel2 N Fin R Ring M B M S i N j N k K i M j = A k
10 9 3expa N Fin R Ring M B M S i N j N k K i M j = A k
11 10 biimpd N Fin R Ring M B M S i N j N k K i M j = A k
12 11 impancom N Fin R Ring M S M B i N j N k K i M j = A k
13 8 12 jcai N Fin R Ring M S M B i N j N k K i M j = A k
14 13 ex N Fin R Ring M S M B i N j N k K i M j = A k