Metamath Proof Explorer


Theorem cramerlem1

Description: Lemma 1 for cramer . (Contributed by AV, 21-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramer.a A=NMatR
cramer.b B=BaseA
cramer.v V=BaseRN
cramer.d D=NmaDetR
cramer.x ·˙=RmaVecMulNN
cramer.q ×˙=/rR
Assertion cramerlem1 RCRingXBYVDXUnitRZVX·˙Z=YZ=iNDXNmatRepVRYi×˙DX

Proof

Step Hyp Ref Expression
1 cramer.a A=NMatR
2 cramer.b B=BaseA
3 cramer.v V=BaseRN
4 cramer.d D=NmaDetR
5 cramer.x ·˙=RmaVecMulNN
6 cramer.q ×˙=/rR
7 simp1 RCRingXBYVDXUnitRZVX·˙Z=YRCRing
8 7 anim1i RCRingXBYVDXUnitRZVX·˙Z=YaNRCRingaN
9 simpl2 RCRingXBYVDXUnitRZVX·˙Z=YaNXBYV
10 pm3.22 DXUnitRX·˙Z=YX·˙Z=YDXUnitR
11 10 3adant2 DXUnitRZVX·˙Z=YX·˙Z=YDXUnitR
12 11 3ad2ant3 RCRingXBYVDXUnitRZVX·˙Z=YX·˙Z=YDXUnitR
13 12 adantr RCRingXBYVDXUnitRZVX·˙Z=YaNX·˙Z=YDXUnitR
14 eqid 1ANmatRepVRZa=1ANmatRepVRZa
15 eqid XNmatRepVRYa=XNmatRepVRYa
16 1 2 3 14 15 5 4 6 cramerimp RCRingaNXBYVX·˙Z=YDXUnitRZa=DXNmatRepVRYa×˙DX
17 8 9 13 16 syl3anc RCRingXBYVDXUnitRZVX·˙Z=YaNZa=DXNmatRepVRYa×˙DX
18 17 ralrimiva RCRingXBYVDXUnitRZVX·˙Z=YaNZa=DXNmatRepVRYa×˙DX
19 elmapfn ZBaseRNZFnN
20 19 3 eleq2s ZVZFnN
21 20 3ad2ant2 DXUnitRZVX·˙Z=YZFnN
22 21 3ad2ant3 RCRingXBYVDXUnitRZVX·˙Z=YZFnN
23 2fveq3 a=iDXNmatRepVRYa=DXNmatRepVRYi
24 23 oveq1d a=iDXNmatRepVRYa×˙DX=DXNmatRepVRYi×˙DX
25 ovexd RCRingXBYVDXUnitRZVX·˙Z=YaNDXNmatRepVRYa×˙DXV
26 ovexd RCRingXBYVDXUnitRZVX·˙Z=YiNDXNmatRepVRYi×˙DXV
27 22 24 25 26 fnmptfvd RCRingXBYVDXUnitRZVX·˙Z=YZ=iNDXNmatRepVRYi×˙DXaNZa=DXNmatRepVRYa×˙DX
28 18 27 mpbird RCRingXBYVDXUnitRZVX·˙Z=YZ=iNDXNmatRepVRYi×˙DX