Metamath Proof Explorer


Theorem crngohomfo

Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011)

Ref Expression
Hypotheses crnghomfo.1 G = 1 st R
crnghomfo.2 X = ran G
crnghomfo.3 J = 1 st S
crnghomfo.4 Y = ran J
Assertion crngohomfo R CRingOps S RingOps F R RngHom S F : X onto Y S CRingOps

Proof

Step Hyp Ref Expression
1 crnghomfo.1 G = 1 st R
2 crnghomfo.2 X = ran G
3 crnghomfo.3 J = 1 st S
4 crnghomfo.4 Y = ran J
5 simplr R CRingOps S RingOps F R RngHom S F : X onto Y S RingOps
6 foelrn F : X onto Y y Y w X y = F w
7 6 ex F : X onto Y y Y w X y = F w
8 foelrn F : X onto Y z Y x X z = F x
9 8 ex F : X onto Y z Y x X z = F x
10 7 9 anim12d F : X onto Y y Y z Y w X y = F w x X z = F x
11 reeanv w X x X y = F w z = F x w X y = F w x X z = F x
12 10 11 syl6ibr F : X onto Y y Y z Y w X x X y = F w z = F x
13 12 ad2antll R CRingOps S RingOps F R RngHom S F : X onto Y y Y z Y w X x X y = F w z = F x
14 eqid 2 nd R = 2 nd R
15 1 14 2 crngocom R CRingOps w X x X w 2 nd R x = x 2 nd R w
16 15 3expb R CRingOps w X x X w 2 nd R x = x 2 nd R w
17 16 3ad2antl1 R CRingOps S RingOps F R RngHom S w X x X w 2 nd R x = x 2 nd R w
18 17 fveq2d R CRingOps S RingOps F R RngHom S w X x X F w 2 nd R x = F x 2 nd R w
19 crngorngo R CRingOps R RingOps
20 eqid 2 nd S = 2 nd S
21 1 2 14 20 rngohommul R RingOps S RingOps F R RngHom S w X x X F w 2 nd R x = F w 2 nd S F x
22 19 21 syl3anl1 R CRingOps S RingOps F R RngHom S w X x X F w 2 nd R x = F w 2 nd S F x
23 1 2 14 20 rngohommul R RingOps S RingOps F R RngHom S x X w X F x 2 nd R w = F x 2 nd S F w
24 23 ancom2s R RingOps S RingOps F R RngHom S w X x X F x 2 nd R w = F x 2 nd S F w
25 19 24 syl3anl1 R CRingOps S RingOps F R RngHom S w X x X F x 2 nd R w = F x 2 nd S F w
26 18 22 25 3eqtr3d R CRingOps S RingOps F R RngHom S w X x X F w 2 nd S F x = F x 2 nd S F w
27 oveq12 y = F w z = F x y 2 nd S z = F w 2 nd S F x
28 oveq12 z = F x y = F w z 2 nd S y = F x 2 nd S F w
29 28 ancoms y = F w z = F x z 2 nd S y = F x 2 nd S F w
30 27 29 eqeq12d y = F w z = F x y 2 nd S z = z 2 nd S y F w 2 nd S F x = F x 2 nd S F w
31 26 30 syl5ibrcom R CRingOps S RingOps F R RngHom S w X x X y = F w z = F x y 2 nd S z = z 2 nd S y
32 31 ex R CRingOps S RingOps F R RngHom S w X x X y = F w z = F x y 2 nd S z = z 2 nd S y
33 32 3expa R CRingOps S RingOps F R RngHom S w X x X y = F w z = F x y 2 nd S z = z 2 nd S y
34 33 adantrr R CRingOps S RingOps F R RngHom S F : X onto Y w X x X y = F w z = F x y 2 nd S z = z 2 nd S y
35 34 rexlimdvv R CRingOps S RingOps F R RngHom S F : X onto Y w X x X y = F w z = F x y 2 nd S z = z 2 nd S y
36 13 35 syld R CRingOps S RingOps F R RngHom S F : X onto Y y Y z Y y 2 nd S z = z 2 nd S y
37 36 ralrimivv R CRingOps S RingOps F R RngHom S F : X onto Y y Y z Y y 2 nd S z = z 2 nd S y
38 3 20 4 iscrngo2 S CRingOps S RingOps y Y z Y y 2 nd S z = z 2 nd S y
39 5 37 38 sylanbrc R CRingOps S RingOps F R RngHom S F : X onto Y S CRingOps