Metamath Proof Explorer


Theorem csbcnvgALT

Description: Move class substitution in and out of the converse of a relation. Version of csbcnv with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion csbcnvgALT AVA/xF-1=A/xF-1

Proof

Step Hyp Ref Expression
1 sbcbr123 [˙A/x]˙zFyA/xzA/xFA/xy
2 csbconstg AVA/xz=z
3 csbconstg AVA/xy=y
4 2 3 breq12d AVA/xzA/xFA/xyzA/xFy
5 1 4 bitrid AV[˙A/x]˙zFyzA/xFy
6 5 opabbidv AVyz|[˙A/x]˙zFy=yz|zA/xFy
7 csbopabgALT AVA/xyz|zFy=yz|[˙A/x]˙zFy
8 df-cnv A/xF-1=yz|zA/xFy
9 8 a1i AVA/xF-1=yz|zA/xFy
10 6 7 9 3eqtr4rd AVA/xF-1=A/xyz|zFy
11 df-cnv F-1=yz|zFy
12 11 csbeq2i A/xF-1=A/xyz|zFy
13 10 12 eqtr4di AVA/xF-1=A/xF-1