Metamath Proof Explorer


Theorem curry2val

Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008)

Ref Expression
Hypothesis curry2.1 G=F1stV×C-1
Assertion curry2val FFnA×BCBGD=DFC

Proof

Step Hyp Ref Expression
1 curry2.1 G=F1stV×C-1
2 1 curry2 FFnA×BCBG=xAxFC
3 2 fveq1d FFnA×BCBGD=xAxFCD
4 eqid xAxFC=xAxFC
5 4 fvmptndm ¬DAxAxFCD=
6 5 adantl FFnA×B¬DAxAxFCD=
7 fndm FFnA×BdomF=A×B
8 simpl DACBDA
9 8 con3i ¬DA¬DACB
10 ndmovg domF=A×B¬DACBDFC=
11 7 9 10 syl2an FFnA×B¬DADFC=
12 6 11 eqtr4d FFnA×B¬DAxAxFCD=DFC
13 12 ex FFnA×B¬DAxAxFCD=DFC
14 13 adantr FFnA×BCB¬DAxAxFCD=DFC
15 oveq1 x=DxFC=DFC
16 ovex DFCV
17 15 4 16 fvmpt DAxAxFCD=DFC
18 14 17 pm2.61d2 FFnA×BCBxAxFCD=DFC
19 3 18 eqtrd FFnA×BCBGD=DFC