Metamath Proof Explorer


Theorem cvati

Description: If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion cvati ABxHAtomsAx=B

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 cvpss ACBCABAB
4 1 2 3 mp2an ABAB
5 1 2 chrelati ABxHAtomsAAxAxB
6 4 5 syl ABxHAtomsAAxAxB
7 cvnbtwn2 ACBCAxCABAAxAxBAx=B
8 1 2 7 mp3an12 AxCABAAxAxBAx=B
9 atelch xHAtomsxC
10 chjcl ACxCAxC
11 1 9 10 sylancr xHAtomsAxC
12 8 11 syl11 ABxHAtomsAAxAxBAx=B
13 12 reximdvai ABxHAtomsAAxAxBxHAtomsAx=B
14 6 13 mpd ABxHAtomsAx=B