Metamath Proof Explorer


Theorem cvbr2

Description: Binary relation expressing B covers A . Definition of covers in Kalmbach p. 15. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvbr2 ACBCABABxCAxxBx=B

Proof

Step Hyp Ref Expression
1 cvbr ACBCABAB¬xCAxxB
2 iman AxxBx=B¬AxxB¬x=B
3 anass AxxB¬x=BAxxB¬x=B
4 dfpss2 xBxB¬x=B
5 4 anbi2i AxxBAxxB¬x=B
6 3 5 bitr4i AxxB¬x=BAxxB
7 2 6 xchbinx AxxBx=B¬AxxB
8 7 ralbii xCAxxBx=BxC¬AxxB
9 ralnex xC¬AxxB¬xCAxxB
10 8 9 bitri xCAxxBx=B¬xCAxxB
11 10 anbi2i ABxCAxxBx=BAB¬xCAxxB
12 1 11 bitr4di ACBCABABxCAxxBx=B