Metamath Proof Explorer


Theorem cvexch

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvexch ACBCABBAAB

Proof

Step Hyp Ref Expression
1 ineq1 A=ifACAAB=ifACAB
2 1 breq1d A=ifACAABBifACABB
3 id A=ifACAA=ifACA
4 oveq1 A=ifACAAB=ifACAB
5 3 4 breq12d A=ifACAAABifACAifACAB
6 2 5 bibi12d A=ifACAABBAABifACABBifACAifACAB
7 ineq2 B=ifBCBifACAB=ifACAifBCB
8 id B=ifBCBB=ifBCB
9 7 8 breq12d B=ifBCBifACABBifACAifBCBifBCB
10 oveq2 B=ifBCBifACAB=ifACAifBCB
11 10 breq2d B=ifBCBifACAifACABifACAifACAifBCB
12 9 11 bibi12d B=ifBCBifACABBifACAifACABifACAifBCBifBCBifACAifACAifBCB
13 ifchhv ifACAC
14 ifchhv ifBCBC
15 13 14 cvexchi ifACAifBCBifBCBifACAifACAifBCB
16 6 12 15 dedth2h ACBCABBAAB