Metamath Proof Explorer


Theorem cvlatcvr1

Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatcvr1.j ˙=joinK
cvlatcvr1.c C=K
cvlatcvr1.a A=AtomsK
Assertion cvlatcvr1 KOMLKCLatKCvLatPAQAPQPCP˙Q

Proof

Step Hyp Ref Expression
1 cvlatcvr1.j ˙=joinK
2 cvlatcvr1.c C=K
3 cvlatcvr1.a A=AtomsK
4 simp13 KOMLKCLatKCvLatPAQAKCvLat
5 cvlatl KCvLatKAtLat
6 4 5 syl KOMLKCLatKCvLatPAQAKAtLat
7 eqid meetK=meetK
8 eqid 0.K=0.K
9 7 8 3 atnem0 KAtLatPAQAPQPmeetKQ=0.K
10 6 9 syld3an1 KOMLKCLatKCvLatPAQAPQPmeetKQ=0.K
11 eqid BaseK=BaseK
12 11 3 atbase PAPBaseK
13 11 1 7 8 2 3 cvlcvrp KOMLKCLatKCvLatPBaseKQAPmeetKQ=0.KPCP˙Q
14 12 13 syl3an2 KOMLKCLatKCvLatPAQAPmeetKQ=0.KPCP˙Q
15 10 14 bitrd KOMLKCLatKCvLatPAQAPQPCP˙Q