Metamath Proof Explorer


Theorem cvlatexch3

Description: Atom exchange property. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙=K
cvlatexch.j ˙=joinK
cvlatexch.a A=AtomsK
Assertion cvlatexch3 KCvLatPAQARAPQPRP˙Q˙RP˙Q=P˙R

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙=K
2 cvlatexch.j ˙=joinK
3 cvlatexch.a A=AtomsK
4 simp1 KCvLatPAQARAPQPRKCvLat
5 simp21 KCvLatPAQARAPQPRPA
6 simp23 KCvLatPAQARAPQPRRA
7 simp22 KCvLatPAQARAPQPRQA
8 simp3l KCvLatPAQARAPQPRPQ
9 1 2 3 cvlatexchb1 KCvLatPARAQAPQP˙Q˙RQ˙P=Q˙R
10 4 5 6 7 8 9 syl131anc KCvLatPAQARAPQPRP˙Q˙RQ˙P=Q˙R
11 10 biimpa KCvLatPAQARAPQPRP˙Q˙RQ˙P=Q˙R
12 simpl1 KCvLatPAQARAPQPRP˙Q˙RKCvLat
13 cvllat KCvLatKLat
14 12 13 syl KCvLatPAQARAPQPRP˙Q˙RKLat
15 simpl21 KCvLatPAQARAPQPRP˙Q˙RPA
16 eqid BaseK=BaseK
17 16 3 atbase PAPBaseK
18 15 17 syl KCvLatPAQARAPQPRP˙Q˙RPBaseK
19 simpl22 KCvLatPAQARAPQPRP˙Q˙RQA
20 16 3 atbase QAQBaseK
21 19 20 syl KCvLatPAQARAPQPRP˙Q˙RQBaseK
22 16 2 latjcom KLatPBaseKQBaseKP˙Q=Q˙P
23 14 18 21 22 syl3anc KCvLatPAQARAPQPRP˙Q˙RP˙Q=Q˙P
24 1 2 3 cvlatexchb2 KCvLatPAQARAPRP˙Q˙RP˙R=Q˙R
25 24 3adant3l KCvLatPAQARAPQPRP˙Q˙RP˙R=Q˙R
26 25 biimpa KCvLatPAQARAPQPRP˙Q˙RP˙R=Q˙R
27 11 23 26 3eqtr4d KCvLatPAQARAPQPRP˙Q˙RP˙Q=P˙R
28 27 ex KCvLatPAQARAPQPRP˙Q˙RP˙Q=P˙R