Metamath Proof Explorer


Theorem cvlexchb2

Description: An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012)

Ref Expression
Hypotheses cvlexch.b B=BaseK
cvlexch.l ˙=K
cvlexch.j ˙=joinK
cvlexch.a A=AtomsK
Assertion cvlexchb2 KCvLatPAQAXB¬P˙XP˙Q˙XP˙X=Q˙X

Proof

Step Hyp Ref Expression
1 cvlexch.b B=BaseK
2 cvlexch.l ˙=K
3 cvlexch.j ˙=joinK
4 cvlexch.a A=AtomsK
5 1 2 3 4 cvlexchb1 KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
6 cvllat KCvLatKLat
7 6 3ad2ant1 KCvLatPAQAXB¬P˙XKLat
8 simp22 KCvLatPAQAXB¬P˙XQA
9 1 4 atbase QAQB
10 8 9 syl KCvLatPAQAXB¬P˙XQB
11 simp23 KCvLatPAQAXB¬P˙XXB
12 1 3 latjcom KLatQBXBQ˙X=X˙Q
13 7 10 11 12 syl3anc KCvLatPAQAXB¬P˙XQ˙X=X˙Q
14 13 breq2d KCvLatPAQAXB¬P˙XP˙Q˙XP˙X˙Q
15 simp21 KCvLatPAQAXB¬P˙XPA
16 1 4 atbase PAPB
17 15 16 syl KCvLatPAQAXB¬P˙XPB
18 1 3 latjcom KLatPBXBP˙X=X˙P
19 7 17 11 18 syl3anc KCvLatPAQAXB¬P˙XP˙X=X˙P
20 19 13 eqeq12d KCvLatPAQAXB¬P˙XP˙X=Q˙XX˙P=X˙Q
21 5 14 20 3bitr4d KCvLatPAQAXB¬P˙XP˙Q˙XP˙X=Q˙X