Metamath Proof Explorer


Theorem cvlsupr7

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a A=AtomsK
cvlsupr5.j ˙=joinK
Assertion cvlsupr7 KCvLatPAQARAPQP˙R=Q˙RP˙Q=R˙Q

Proof

Step Hyp Ref Expression
1 cvlsupr5.a A=AtomsK
2 cvlsupr5.j ˙=joinK
3 cvllat KCvLatKLat
4 3 3ad2ant1 KCvLatPAQARAPQP˙R=Q˙RKLat
5 simp21 KCvLatPAQARAPQP˙R=Q˙RPA
6 eqid BaseK=BaseK
7 6 1 atbase PAPBaseK
8 5 7 syl KCvLatPAQARAPQP˙R=Q˙RPBaseK
9 simp23 KCvLatPAQARAPQP˙R=Q˙RRA
10 6 1 atbase RARBaseK
11 9 10 syl KCvLatPAQARAPQP˙R=Q˙RRBaseK
12 eqid K=K
13 6 12 2 latlej1 KLatPBaseKRBaseKPKP˙R
14 4 8 11 13 syl3anc KCvLatPAQARAPQP˙R=Q˙RPKP˙R
15 simp3r KCvLatPAQARAPQP˙R=Q˙RP˙R=Q˙R
16 14 15 breqtrd KCvLatPAQARAPQP˙R=Q˙RPKQ˙R
17 simp22 KCvLatPAQARAPQP˙R=Q˙RQA
18 6 1 atbase QAQBaseK
19 17 18 syl KCvLatPAQARAPQP˙R=Q˙RQBaseK
20 6 2 latjcom KLatQBaseKRBaseKQ˙R=R˙Q
21 4 19 11 20 syl3anc KCvLatPAQARAPQP˙R=Q˙RQ˙R=R˙Q
22 16 21 breqtrd KCvLatPAQARAPQP˙R=Q˙RPKR˙Q
23 simp1 KCvLatPAQARAPQP˙R=Q˙RKCvLat
24 simp3l KCvLatPAQARAPQP˙R=Q˙RPQ
25 12 2 1 cvlatexchb2 KCvLatPARAQAPQPKR˙QP˙Q=R˙Q
26 23 5 9 17 24 25 syl131anc KCvLatPAQARAPQP˙R=Q˙RPKR˙QP˙Q=R˙Q
27 22 26 mpbid KCvLatPAQARAPQP˙R=Q˙RP˙Q=R˙Q