Metamath Proof Explorer


Theorem cvlsupr8

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a A=AtomsK
cvlsupr5.j ˙=joinK
Assertion cvlsupr8 KCvLatPAQARAPQP˙R=Q˙RP˙Q=P˙R

Proof

Step Hyp Ref Expression
1 cvlsupr5.a A=AtomsK
2 cvlsupr5.j ˙=joinK
3 cvllat KCvLatKLat
4 3 3ad2ant1 KCvLatPAQARAPQP˙R=Q˙RKLat
5 simp22 KCvLatPAQARAPQP˙R=Q˙RQA
6 eqid BaseK=BaseK
7 6 1 atbase QAQBaseK
8 5 7 syl KCvLatPAQARAPQP˙R=Q˙RQBaseK
9 simp23 KCvLatPAQARAPQP˙R=Q˙RRA
10 6 1 atbase RARBaseK
11 9 10 syl KCvLatPAQARAPQP˙R=Q˙RRBaseK
12 6 2 latjcom KLatQBaseKRBaseKQ˙R=R˙Q
13 4 8 11 12 syl3anc KCvLatPAQARAPQP˙R=Q˙RQ˙R=R˙Q
14 simp3r KCvLatPAQARAPQP˙R=Q˙RP˙R=Q˙R
15 1 2 cvlsupr7 KCvLatPAQARAPQP˙R=Q˙RP˙Q=R˙Q
16 13 14 15 3eqtr4rd KCvLatPAQARAPQP˙R=Q˙RP˙Q=P˙R