Metamath Proof Explorer


Theorem cvmd

Description: The covering property implies the modular pair property. Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvmd ACBCABBA𝑀B

Proof

Step Hyp Ref Expression
1 ineq1 A=ifACAAB=ifACAB
2 1 breq1d A=ifACAABBifACABB
3 breq1 A=ifACAA𝑀BifACA𝑀B
4 2 3 imbi12d A=ifACAABBA𝑀BifACABBifACA𝑀B
5 ineq2 B=ifBCBifACAB=ifACAifBCB
6 id B=ifBCBB=ifBCB
7 5 6 breq12d B=ifBCBifACABBifACAifBCBifBCB
8 breq2 B=ifBCBifACA𝑀BifACA𝑀ifBCB
9 7 8 imbi12d B=ifBCBifACABBifACA𝑀BifACAifBCBifBCBifACA𝑀ifBCB
10 ifchhv ifACAC
11 ifchhv ifBCBC
12 10 11 cvmdi ifACAifBCBifBCBifACA𝑀ifBCB
13 4 9 12 dedth2h ACBCABBA𝑀B
14 13 3impia ACBCABBA𝑀B