Metamath Proof Explorer


Theorem cvmsiota

Description: Identify the unique element of T containing A . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmseu.1 B=C
cvmsiota.2 W=ιxT|Ax
Assertion cvmsiota FCCovMapJTSUABFAUWTAW

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmseu.1 B=C
3 cvmsiota.2 W=ιxT|Ax
4 1 2 cvmseu FCCovMapJTSUABFAU∃!xTAx
5 riotacl2 ∃!xTAxιxT|AxxT|Ax
6 4 5 syl FCCovMapJTSUABFAUιxT|AxxT|Ax
7 3 6 eqeltrid FCCovMapJTSUABFAUWxT|Ax
8 eleq2 v=WAvAW
9 eleq2 x=vAxAv
10 9 cbvrabv xT|Ax=vT|Av
11 8 10 elrab2 WxT|AxWTAW
12 7 11 sylib FCCovMapJTSUABFAUWTAW