Metamath Proof Explorer


Theorem cvmsiota

Description: Identify the unique element of T containing A . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmseu.1 B = C
cvmsiota.2 W = ι x T | A x
Assertion cvmsiota F C CovMap J T S U A B F A U W T A W

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmseu.1 B = C
3 cvmsiota.2 W = ι x T | A x
4 1 2 cvmseu F C CovMap J T S U A B F A U ∃! x T A x
5 riotacl2 ∃! x T A x ι x T | A x x T | A x
6 4 5 syl F C CovMap J T S U A B F A U ι x T | A x x T | A x
7 3 6 eqeltrid F C CovMap J T S U A B F A U W x T | A x
8 eleq2 v = W A v A W
9 eleq2 x = v A x A v
10 9 cbvrabv x T | A x = v T | A v
11 8 10 elrab2 W x T | A x W T A W
12 7 11 sylib F C CovMap J T S U A B F A U W T A W