Metamath Proof Explorer


Theorem cvnbtwn2

Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn2 ACBCCCABACCBC=B

Proof

Step Hyp Ref Expression
1 cvnbtwn ACBCCCAB¬ACCB
2 iman ACCBC=B¬ACCB¬C=B
3 anass ACCB¬C=BACCB¬C=B
4 dfpss2 CBCB¬C=B
5 4 anbi2i ACCBACCB¬C=B
6 3 5 bitr4i ACCB¬C=BACCB
7 6 notbii ¬ACCB¬C=B¬ACCB
8 2 7 bitr2i ¬ACCBACCBC=B
9 1 8 imbitrdi ACBCCCABACCBC=B