Metamath Proof Explorer


Theorem cvrval3

Description: Binary relation expressing Y covers X . (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses cvrval3.b B=BaseK
cvrval3.l ˙=K
cvrval3.j ˙=joinK
cvrval3.c C=K
cvrval3.a A=AtomsK
Assertion cvrval3 KHLXBYBXCYpA¬p˙XX˙p=Y

Proof

Step Hyp Ref Expression
1 cvrval3.b B=BaseK
2 cvrval3.l ˙=K
3 cvrval3.j ˙=joinK
4 cvrval3.c C=K
5 cvrval3.a A=AtomsK
6 eqid <K=<K
7 1 6 4 cvrlt KHLXBYBXCYX<KY
8 1 2 6 3 4 5 hlrelat3 KHLXBYBX<KYpAXCX˙pX˙p˙Y
9 7 8 syldan KHLXBYBXCYpAXCX˙pX˙p˙Y
10 simp3l KHLXBYBXCYpAXCX˙pX˙p˙YXCX˙p
11 simp1l1 KHLXBYBXCYpAXCX˙pX˙p˙YKHL
12 simp1l2 KHLXBYBXCYpAXCX˙pX˙p˙YXB
13 simp2 KHLXBYBXCYpAXCX˙pX˙p˙YpA
14 1 2 3 4 5 cvr1 KHLXBpA¬p˙XXCX˙p
15 11 12 13 14 syl3anc KHLXBYBXCYpAXCX˙pX˙p˙Y¬p˙XXCX˙p
16 10 15 mpbird KHLXBYBXCYpAXCX˙pX˙p˙Y¬p˙X
17 11 hllatd KHLXBYBXCYpAXCX˙pX˙p˙YKLat
18 1 5 atbase pApB
19 18 3ad2ant2 KHLXBYBXCYpAXCX˙pX˙p˙YpB
20 1 3 latjcl KLatXBpBX˙pB
21 17 12 19 20 syl3anc KHLXBYBXCYpAXCX˙pX˙p˙YX˙pB
22 1 6 4 cvrlt KHLXBX˙pBXCX˙pX<KX˙p
23 11 12 21 10 22 syl31anc KHLXBYBXCYpAXCX˙pX˙p˙YX<KX˙p
24 simp3r KHLXBYBXCYpAXCX˙pX˙p˙YX˙p˙Y
25 hlpos KHLKPoset
26 11 25 syl KHLXBYBXCYpAXCX˙pX˙p˙YKPoset
27 simp1l3 KHLXBYBXCYpAXCX˙pX˙p˙YYB
28 simp1r KHLXBYBXCYpAXCX˙pX˙p˙YXCY
29 1 2 6 4 cvrnbtwn2 KPosetXBYBX˙pBXCYX<KX˙pX˙p˙YX˙p=Y
30 26 12 27 21 28 29 syl131anc KHLXBYBXCYpAXCX˙pX˙p˙YX<KX˙pX˙p˙YX˙p=Y
31 23 24 30 mpbi2and KHLXBYBXCYpAXCX˙pX˙p˙YX˙p=Y
32 16 31 jca KHLXBYBXCYpAXCX˙pX˙p˙Y¬p˙XX˙p=Y
33 32 3exp KHLXBYBXCYpAXCX˙pX˙p˙Y¬p˙XX˙p=Y
34 33 reximdvai KHLXBYBXCYpAXCX˙pX˙p˙YpA¬p˙XX˙p=Y
35 9 34 mpd KHLXBYBXCYpA¬p˙XX˙p=Y
36 35 ex KHLXBYBXCYpA¬p˙XX˙p=Y
37 simp3l KHLXBYBpA¬p˙XX˙p=Y¬p˙X
38 simp11 KHLXBYBpA¬p˙XX˙p=YKHL
39 simp12 KHLXBYBpA¬p˙XX˙p=YXB
40 simp2 KHLXBYBpA¬p˙XX˙p=YpA
41 38 39 40 14 syl3anc KHLXBYBpA¬p˙XX˙p=Y¬p˙XXCX˙p
42 37 41 mpbid KHLXBYBpA¬p˙XX˙p=YXCX˙p
43 simp3r KHLXBYBpA¬p˙XX˙p=YX˙p=Y
44 42 43 breqtrd KHLXBYBpA¬p˙XX˙p=YXCY
45 44 rexlimdv3a KHLXBYBpA¬p˙XX˙p=YXCY
46 36 45 impbid KHLXBYBXCYpA¬p˙XX˙p=Y