Metamath Proof Explorer


Theorem cxpcn2

Description: Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Hypotheses cxpcn2.j J=TopOpenfld
cxpcn2.k K=J𝑡+
Assertion cxpcn2 x+,yxyK×tJCnJ

Proof

Step Hyp Ref Expression
1 cxpcn2.j J=TopOpenfld
2 cxpcn2.k K=J𝑡+
3 1 cnfldtopon JTopOn
4 rpcn x+x
5 ax-1 x+xx+
6 eqid −∞0=−∞0
7 6 ellogdm x−∞0xxx+
8 4 5 7 sylanbrc x+x−∞0
9 8 ssriv +−∞0
10 cnex V
11 10 difexi −∞0V
12 restabs JTopOn+−∞0−∞0VJ𝑡−∞0𝑡+=J𝑡+
13 3 9 11 12 mp3an J𝑡−∞0𝑡+=J𝑡+
14 2 13 eqtr4i K=J𝑡−∞0𝑡+
15 3 a1i JTopOn
16 difss −∞0
17 resttopon JTopOn−∞0J𝑡−∞0TopOn−∞0
18 15 16 17 sylancl J𝑡−∞0TopOn−∞0
19 9 a1i +−∞0
20 3 toponrestid J=J𝑡
21 ssidd
22 eqid J𝑡−∞0=J𝑡−∞0
23 6 1 22 cxpcn x−∞0,yxyJ𝑡−∞0×tJCnJ
24 23 a1i x−∞0,yxyJ𝑡−∞0×tJCnJ
25 14 18 19 20 15 21 24 cnmpt2res x+,yxyK×tJCnJ
26 25 mptru x+,yxyK×tJCnJ