Metamath Proof Explorer


Theorem cxpcn2

Description: Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Hypotheses cxpcn2.j J = TopOpen fld
cxpcn2.k K = J 𝑡 +
Assertion cxpcn2 x + , y x y K × t J Cn J

Proof

Step Hyp Ref Expression
1 cxpcn2.j J = TopOpen fld
2 cxpcn2.k K = J 𝑡 +
3 1 cnfldtopon J TopOn
4 rpcn x + x
5 ax-1 x + x x +
6 eqid −∞ 0 = −∞ 0
7 6 ellogdm x −∞ 0 x x x +
8 4 5 7 sylanbrc x + x −∞ 0
9 8 ssriv + −∞ 0
10 cnex V
11 10 difexi −∞ 0 V
12 restabs J TopOn + −∞ 0 −∞ 0 V J 𝑡 −∞ 0 𝑡 + = J 𝑡 +
13 3 9 11 12 mp3an J 𝑡 −∞ 0 𝑡 + = J 𝑡 +
14 2 13 eqtr4i K = J 𝑡 −∞ 0 𝑡 +
15 3 a1i J TopOn
16 difss −∞ 0
17 resttopon J TopOn −∞ 0 J 𝑡 −∞ 0 TopOn −∞ 0
18 15 16 17 sylancl J 𝑡 −∞ 0 TopOn −∞ 0
19 9 a1i + −∞ 0
20 3 toponrestid J = J 𝑡
21 ssidd
22 eqid J 𝑡 −∞ 0 = J 𝑡 −∞ 0
23 6 1 22 cxpcn x −∞ 0 , y x y J 𝑡 −∞ 0 × t J Cn J
24 23 a1i x −∞ 0 , y x y J 𝑡 −∞ 0 × t J Cn J
25 14 18 19 20 15 21 24 cnmpt2res x + , y x y K × t J Cn J
26 25 mptru x + , y x y K × t J Cn J