Metamath Proof Explorer


Theorem cxpef

Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpef AA0BAB=eBlogA

Proof

Step Hyp Ref Expression
1 cxpval ABAB=ifA=0ifB=010eBlogA
2 1 3adant2 AA0BAB=ifA=0ifB=010eBlogA
3 simp2 AA0BA0
4 3 neneqd AA0B¬A=0
5 4 iffalsed AA0BifA=0ifB=010eBlogA=eBlogA
6 2 5 eqtrd AA0BAB=eBlogA