Metamath Proof Explorer


Theorem cyc2fv2

Description: Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c C=toCycD
cycpm2.d φDV
cycpm2.i φID
cycpm2.j φJD
cycpm2.1 φIJ
cycpm2cl.s S=SymGrpD
Assertion cyc2fv2 φC⟨“IJ”⟩J=I

Proof

Step Hyp Ref Expression
1 cycpm2.c C=toCycD
2 cycpm2.d φDV
3 cycpm2.i φID
4 cycpm2.j φJD
5 cycpm2.1 φIJ
6 cycpm2cl.s S=SymGrpD
7 3 4 s2cld φ⟨“IJ”⟩WordD
8 3 4 5 s2f1 φ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
9 2pos 0<2
10 s2len ⟨“IJ”⟩=2
11 9 10 breqtrri 0<⟨“IJ”⟩
12 11 a1i φ0<⟨“IJ”⟩
13 10 oveq1i ⟨“IJ”⟩1=21
14 2m1e1 21=1
15 13 14 eqtr2i 1=⟨“IJ”⟩1
16 15 a1i φ1=⟨“IJ”⟩1
17 1 2 7 8 12 16 cycpmfv2 φC⟨“IJ”⟩⟨“IJ”⟩1=⟨“IJ”⟩0
18 s2fv1 JD⟨“IJ”⟩1=J
19 4 18 syl φ⟨“IJ”⟩1=J
20 19 fveq2d φC⟨“IJ”⟩⟨“IJ”⟩1=C⟨“IJ”⟩J
21 s2fv0 ID⟨“IJ”⟩0=I
22 3 21 syl φ⟨“IJ”⟩0=I
23 17 20 22 3eqtr3d φC⟨“IJ”⟩J=I