Metamath Proof Explorer


Theorem cycsubg

Description: The cyclic group generated by A is the smallest subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x X=BaseG
cycsubg.t ·˙=G
cycsubg.f F=xx·˙A
Assertion cycsubg GGrpAXranF=sSubGrpG|As

Proof

Step Hyp Ref Expression
1 cycsubg.x X=BaseG
2 cycsubg.t ·˙=G
3 cycsubg.f F=xx·˙A
4 ssintab ranFs|sSubGrpGAsssSubGrpGAsranFs
5 1 2 3 cycsubgss sSubGrpGAsranFs
6 4 5 mpgbir ranFs|sSubGrpGAs
7 df-rab sSubGrpG|As=s|sSubGrpGAs
8 7 inteqi sSubGrpG|As=s|sSubGrpGAs
9 6 8 sseqtrri ranFsSubGrpG|As
10 9 a1i GGrpAXranFsSubGrpG|As
11 1 2 3 cycsubgcl GGrpAXranFSubGrpGAranF
12 eleq2 s=ranFAsAranF
13 12 elrab ranFsSubGrpG|AsranFSubGrpGAranF
14 11 13 sylibr GGrpAXranFsSubGrpG|As
15 intss1 ranFsSubGrpG|AssSubGrpG|AsranF
16 14 15 syl GGrpAXsSubGrpG|AsranF
17 10 16 eqssd GGrpAXranF=sSubGrpG|As