Metamath Proof Explorer


Theorem cycsubgcyg2

Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses cycsubgcyg2.b B=BaseG
cycsubgcyg2.k K=mrClsSubGrpG
Assertion cycsubgcyg2 GGrpABG𝑠KACycGrp

Proof

Step Hyp Ref Expression
1 cycsubgcyg2.b B=BaseG
2 cycsubgcyg2.k K=mrClsSubGrpG
3 eqid G=G
4 eqid nnGA=nnGA
5 1 3 4 2 cycsubg2 GGrpABKA=rannnGA
6 5 oveq2d GGrpABG𝑠KA=G𝑠rannnGA
7 eqid rannnGA=rannnGA
8 1 3 7 cycsubgcyg GGrpABG𝑠rannnGACycGrp
9 6 8 eqeltrd GGrpABG𝑠KACycGrp