| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubgcyg.x |
|
| 2 |
|
cycsubgcyg.t |
|
| 3 |
|
cycsubgcyg.s |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 6
|
cycsubgcl |
|
| 8 |
7
|
simpld |
|
| 9 |
3 8
|
eqeltrid |
|
| 10 |
|
eqid |
|
| 11 |
10
|
subggrp |
|
| 12 |
9 11
|
syl |
|
| 13 |
7
|
simprd |
|
| 14 |
13 3
|
eleqtrrdi |
|
| 15 |
10
|
subgbas |
|
| 16 |
9 15
|
syl |
|
| 17 |
14 16
|
eleqtrd |
|
| 18 |
16
|
eleq2d |
|
| 19 |
18
|
biimpar |
|
| 20 |
|
simpr |
|
| 21 |
20 3
|
eleqtrdi |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
cbvmptv |
|
| 24 |
|
ovex |
|
| 25 |
23 24
|
elrnmpti |
|
| 26 |
21 25
|
sylib |
|
| 27 |
9
|
ad2antrr |
|
| 28 |
|
simpr |
|
| 29 |
14
|
ad2antrr |
|
| 30 |
2 10 5
|
subgmulg |
|
| 31 |
27 28 29 30
|
syl3anc |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
rexbidva |
|
| 34 |
26 33
|
mpbid |
|
| 35 |
19 34
|
syldan |
|
| 36 |
4 5 12 17 35
|
iscygd |
|