Metamath Proof Explorer


Theorem cycsubgcyg

Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cycsubgcyg.x X = Base G
cycsubgcyg.t · ˙ = G
cycsubgcyg.s S = ran x x · ˙ A
Assertion cycsubgcyg G Grp A X G 𝑠 S CycGrp

Proof

Step Hyp Ref Expression
1 cycsubgcyg.x X = Base G
2 cycsubgcyg.t · ˙ = G
3 cycsubgcyg.s S = ran x x · ˙ A
4 eqid Base G 𝑠 S = Base G 𝑠 S
5 eqid G 𝑠 S = G 𝑠 S
6 eqid x x · ˙ A = x x · ˙ A
7 1 2 6 cycsubgcl G Grp A X ran x x · ˙ A SubGrp G A ran x x · ˙ A
8 7 simpld G Grp A X ran x x · ˙ A SubGrp G
9 3 8 eqeltrid G Grp A X S SubGrp G
10 eqid G 𝑠 S = G 𝑠 S
11 10 subggrp S SubGrp G G 𝑠 S Grp
12 9 11 syl G Grp A X G 𝑠 S Grp
13 7 simprd G Grp A X A ran x x · ˙ A
14 13 3 eleqtrrdi G Grp A X A S
15 10 subgbas S SubGrp G S = Base G 𝑠 S
16 9 15 syl G Grp A X S = Base G 𝑠 S
17 14 16 eleqtrd G Grp A X A Base G 𝑠 S
18 16 eleq2d G Grp A X y S y Base G 𝑠 S
19 18 biimpar G Grp A X y Base G 𝑠 S y S
20 simpr G Grp A X y S y S
21 20 3 eleqtrdi G Grp A X y S y ran x x · ˙ A
22 oveq1 x = n x · ˙ A = n · ˙ A
23 22 cbvmptv x x · ˙ A = n n · ˙ A
24 ovex n · ˙ A V
25 23 24 elrnmpti y ran x x · ˙ A n y = n · ˙ A
26 21 25 sylib G Grp A X y S n y = n · ˙ A
27 9 ad2antrr G Grp A X y S n S SubGrp G
28 simpr G Grp A X y S n n
29 14 ad2antrr G Grp A X y S n A S
30 2 10 5 subgmulg S SubGrp G n A S n · ˙ A = n G 𝑠 S A
31 27 28 29 30 syl3anc G Grp A X y S n n · ˙ A = n G 𝑠 S A
32 31 eqeq2d G Grp A X y S n y = n · ˙ A y = n G 𝑠 S A
33 32 rexbidva G Grp A X y S n y = n · ˙ A n y = n G 𝑠 S A
34 26 33 mpbid G Grp A X y S n y = n G 𝑠 S A
35 19 34 syldan G Grp A X y Base G 𝑠 S n y = n G 𝑠 S A
36 4 5 12 17 35 iscygd G Grp A X G 𝑠 S CycGrp