| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubgcyg.x |  | 
						
							| 2 |  | cycsubgcyg.t |  | 
						
							| 3 |  | cycsubgcyg.s |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 1 2 6 | cycsubgcl |  | 
						
							| 8 | 7 | simpld |  | 
						
							| 9 | 3 8 | eqeltrid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | subggrp |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 | 7 | simprd |  | 
						
							| 14 | 13 3 | eleqtrrdi |  | 
						
							| 15 | 10 | subgbas |  | 
						
							| 16 | 9 15 | syl |  | 
						
							| 17 | 14 16 | eleqtrd |  | 
						
							| 18 | 16 | eleq2d |  | 
						
							| 19 | 18 | biimpar |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 3 | eleqtrdi |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 22 | cbvmptv |  | 
						
							| 24 |  | ovex |  | 
						
							| 25 | 23 24 | elrnmpti |  | 
						
							| 26 | 21 25 | sylib |  | 
						
							| 27 | 9 | ad2antrr |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 14 | ad2antrr |  | 
						
							| 30 | 2 10 5 | subgmulg |  | 
						
							| 31 | 27 28 29 30 | syl3anc |  | 
						
							| 32 | 31 | eqeq2d |  | 
						
							| 33 | 32 | rexbidva |  | 
						
							| 34 | 26 33 | mpbid |  | 
						
							| 35 | 19 34 | syldan |  | 
						
							| 36 | 4 5 12 17 35 | iscygd |  |