Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygctb.1 | |
|
cyggex.o | |
||
Assertion | cyggexb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |
|
2 | cyggex.o | |
|
3 | 1 2 | cyggex | |
4 | 3 | expcom | |
5 | 4 | adantl | |
6 | simpll | |
|
7 | ablgrp | |
|
8 | 7 | ad2antrr | |
9 | simplr | |
|
10 | 1 2 | gexcl2 | |
11 | 8 9 10 | syl2anc | |
12 | eqid | |
|
13 | 1 2 12 | gexex | |
14 | 6 11 13 | syl2anc | |
15 | simplr | |
|
16 | 15 | eqeq2d | |
17 | eqid | |
|
18 | eqid | |
|
19 | 1 17 18 12 | cyggenod | |
20 | 8 9 19 | syl2anc | |
21 | ne0i | |
|
22 | 1 17 18 | iscyg2 | |
23 | 22 | baib | |
24 | 8 23 | syl | |
25 | 21 24 | imbitrrid | |
26 | 20 25 | sylbird | |
27 | 26 | expdimp | |
28 | 16 27 | sylbid | |
29 | 28 | rexlimdva | |
30 | 14 29 | mpd | |
31 | 30 | ex | |
32 | 5 31 | impbid | |