Metamath Proof Explorer


Theorem dalem2

Description: Lemma for dath . Show the lines P Q and S T form a plane. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem1.o O=LPlanesK
dalem1.y Y=P˙Q˙R
Assertion dalem2 φP˙Q˙S˙TO

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem1.o O=LPlanesK
6 dalem1.y Y=P˙Q˙R
7 1 dalemkehl φKHL
8 1 dalempea φPA
9 1 dalemqea φQA
10 1 dalemsea φSA
11 1 dalemtea φTA
12 3 4 hlatj4 KHLPAQASATAP˙Q˙S˙T=P˙S˙Q˙T
13 7 8 9 10 11 12 syl122anc φP˙Q˙S˙T=P˙S˙Q˙T
14 1 2 3 4 5 6 dalempjsen φP˙SLLinesK
15 1 2 3 4 5 6 dalemqnet φQT
16 eqid LLinesK=LLinesK
17 3 4 16 llni2 KHLQATAQTQ˙TLLinesK
18 7 9 11 15 17 syl31anc φQ˙TLLinesK
19 1 2 3 4 5 6 dalem1 φP˙SQ˙T
20 1 2 3 4 5 6 dalemcea φCA
21 1 dalemclpjs φC˙P˙S
22 1 dalemclqjt φC˙Q˙T
23 eqid meetK=meetK
24 eqid 0.K=0.K
25 2 23 24 4 16 2llnm4 KHLCAP˙SLLinesKQ˙TLLinesKC˙P˙SC˙Q˙TP˙SmeetKQ˙T0.K
26 7 20 14 18 21 22 25 syl132anc φP˙SmeetKQ˙T0.K
27 23 24 4 16 2llnmat KHLP˙SLLinesKQ˙TLLinesKP˙SQ˙TP˙SmeetKQ˙T0.KP˙SmeetKQ˙TA
28 7 14 18 19 26 27 syl32anc φP˙SmeetKQ˙TA
29 3 23 4 16 5 2llnmj KHLP˙SLLinesKQ˙TLLinesKP˙SmeetKQ˙TAP˙S˙Q˙TO
30 7 14 18 29 syl3anc φP˙SmeetKQ˙TAP˙S˙Q˙TO
31 28 30 mpbid φP˙S˙Q˙TO
32 13 31 eqeltrd φP˙Q˙S˙TO