Metamath Proof Explorer


Theorem dalem1

Description: Lemma for dath . Show the lines P S and Q T are different. (Contributed by NM, 9-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem1.o O=LPlanesK
dalem1.y Y=P˙Q˙R
Assertion dalem1 φP˙SQ˙T

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem1.o O=LPlanesK
6 dalem1.y Y=P˙Q˙R
7 1 dalemclpjs φC˙P˙S
8 1 dalem-clpjq φ¬C˙P˙Q
9 8 adantr φP˙S=Q˙T¬C˙P˙Q
10 1 dalemkehl φKHL
11 1 dalempea φPA
12 1 dalemsea φSA
13 2 3 4 hlatlej1 KHLPASAP˙P˙S
14 10 11 12 13 syl3anc φP˙P˙S
15 14 adantr φP˙S=Q˙TP˙P˙S
16 1 dalemqea φQA
17 1 dalemtea φTA
18 2 3 4 hlatlej1 KHLQATAQ˙Q˙T
19 10 16 17 18 syl3anc φQ˙Q˙T
20 19 adantr φP˙S=Q˙TQ˙Q˙T
21 simpr φP˙S=Q˙TP˙S=Q˙T
22 20 21 breqtrrd φP˙S=Q˙TQ˙P˙S
23 1 dalemkelat φKLat
24 1 4 dalempeb φPBaseK
25 1 4 dalemqeb φQBaseK
26 eqid BaseK=BaseK
27 26 3 4 hlatjcl KHLPASAP˙SBaseK
28 10 11 12 27 syl3anc φP˙SBaseK
29 26 2 3 latjle12 KLatPBaseKQBaseKP˙SBaseKP˙P˙SQ˙P˙SP˙Q˙P˙S
30 23 24 25 28 29 syl13anc φP˙P˙SQ˙P˙SP˙Q˙P˙S
31 30 adantr φP˙S=Q˙TP˙P˙SQ˙P˙SP˙Q˙P˙S
32 15 22 31 mpbi2and φP˙S=Q˙TP˙Q˙P˙S
33 1 dalemrea φRA
34 1 dalemyeo φYO
35 3 4 5 6 lplnri1 KHLPAQARAYOPQ
36 10 11 16 33 34 35 syl131anc φPQ
37 2 3 4 ps-1 KHLPAQAPQPASAP˙Q˙P˙SP˙Q=P˙S
38 10 11 16 36 11 12 37 syl132anc φP˙Q˙P˙SP˙Q=P˙S
39 38 adantr φP˙S=Q˙TP˙Q˙P˙SP˙Q=P˙S
40 32 39 mpbid φP˙S=Q˙TP˙Q=P˙S
41 40 breq2d φP˙S=Q˙TC˙P˙QC˙P˙S
42 9 41 mtbid φP˙S=Q˙T¬C˙P˙S
43 42 ex φP˙S=Q˙T¬C˙P˙S
44 43 necon2ad φC˙P˙SP˙SQ˙T
45 7 44 mpd φP˙SQ˙T