Metamath Proof Explorer


Theorem dalem1

Description: Lemma for dath . Show the lines P S and Q T are different. (Contributed by NM, 9-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem1.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem1.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
Assertion dalem1 ( 𝜑 → ( 𝑃 𝑆 ) ≠ ( 𝑄 𝑇 ) )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem1.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem1.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 1 dalemclpjs ( 𝜑𝐶 ( 𝑃 𝑆 ) )
8 1 dalem-clpjq ( 𝜑 → ¬ 𝐶 ( 𝑃 𝑄 ) )
9 8 adantr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ¬ 𝐶 ( 𝑃 𝑄 ) )
10 1 dalemkehl ( 𝜑𝐾 ∈ HL )
11 1 dalempea ( 𝜑𝑃𝐴 )
12 1 dalemsea ( 𝜑𝑆𝐴 )
13 2 3 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → 𝑃 ( 𝑃 𝑆 ) )
14 10 11 12 13 syl3anc ( 𝜑𝑃 ( 𝑃 𝑆 ) )
15 14 adantr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → 𝑃 ( 𝑃 𝑆 ) )
16 1 dalemqea ( 𝜑𝑄𝐴 )
17 1 dalemtea ( 𝜑𝑇𝐴 )
18 2 3 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → 𝑄 ( 𝑄 𝑇 ) )
19 10 16 17 18 syl3anc ( 𝜑𝑄 ( 𝑄 𝑇 ) )
20 19 adantr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → 𝑄 ( 𝑄 𝑇 ) )
21 simpr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) )
22 20 21 breqtrrd ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → 𝑄 ( 𝑃 𝑆 ) )
23 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
24 1 4 dalempeb ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
25 1 4 dalemqeb ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
26 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
27 26 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
28 10 11 12 27 syl3anc ( 𝜑 → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
29 26 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ( 𝑃 𝑆 ) ∧ 𝑄 ( 𝑃 𝑆 ) ) ↔ ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ) )
30 23 24 25 28 29 syl13anc ( 𝜑 → ( ( 𝑃 ( 𝑃 𝑆 ) ∧ 𝑄 ( 𝑃 𝑆 ) ) ↔ ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ) )
31 30 adantr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( ( 𝑃 ( 𝑃 𝑆 ) ∧ 𝑄 ( 𝑃 𝑆 ) ) ↔ ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ) )
32 15 22 31 mpbi2and ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) )
33 1 dalemrea ( 𝜑𝑅𝐴 )
34 1 dalemyeo ( 𝜑𝑌𝑂 )
35 3 4 5 6 lplnri1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑌𝑂 ) → 𝑃𝑄 )
36 10 11 16 33 34 35 syl131anc ( 𝜑𝑃𝑄 )
37 2 3 4 ps-1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑃𝐴𝑆𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ↔ ( 𝑃 𝑄 ) = ( 𝑃 𝑆 ) ) )
38 10 11 16 36 11 12 37 syl132anc ( 𝜑 → ( ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ↔ ( 𝑃 𝑄 ) = ( 𝑃 𝑆 ) ) )
39 38 adantr ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( ( 𝑃 𝑄 ) ( 𝑃 𝑆 ) ↔ ( 𝑃 𝑄 ) = ( 𝑃 𝑆 ) ) )
40 32 39 mpbid ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑆 ) )
41 40 breq2d ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ( 𝐶 ( 𝑃 𝑄 ) ↔ 𝐶 ( 𝑃 𝑆 ) ) )
42 9 41 mtbid ( ( 𝜑 ∧ ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) ) → ¬ 𝐶 ( 𝑃 𝑆 ) )
43 42 ex ( 𝜑 → ( ( 𝑃 𝑆 ) = ( 𝑄 𝑇 ) → ¬ 𝐶 ( 𝑃 𝑆 ) ) )
44 43 necon2ad ( 𝜑 → ( 𝐶 ( 𝑃 𝑆 ) → ( 𝑃 𝑆 ) ≠ ( 𝑄 𝑇 ) ) )
45 7 44 mpd ( 𝜑 → ( 𝑃 𝑆 ) ≠ ( 𝑄 𝑇 ) )