| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2llnmat.m |
|
| 2 |
|
2llnmat.z |
|
| 3 |
|
2llnmat.a |
|
| 4 |
|
2llnmat.n |
|
| 5 |
|
simpl1 |
|
| 6 |
|
hlatl |
|
| 7 |
5 6
|
syl |
|
| 8 |
5
|
hllatd |
|
| 9 |
|
simpl2 |
|
| 10 |
|
eqid |
|
| 11 |
10 4
|
llnbase |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
simpl3 |
|
| 14 |
10 4
|
llnbase |
|
| 15 |
13 14
|
syl |
|
| 16 |
10 1
|
latmcl |
|
| 17 |
8 12 15 16
|
syl3anc |
|
| 18 |
|
simprr |
|
| 19 |
|
eqid |
|
| 20 |
10 19 2 3
|
atlex |
|
| 21 |
7 17 18 20
|
syl3anc |
|
| 22 |
|
simp1rl |
|
| 23 |
|
simp1l |
|
| 24 |
19 4
|
llncmp |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
simp1l1 |
|
| 27 |
26
|
hllatd |
|
| 28 |
|
simp1l2 |
|
| 29 |
28 11
|
syl |
|
| 30 |
|
simp1l3 |
|
| 31 |
30 14
|
syl |
|
| 32 |
10 19 1
|
latleeqm1 |
|
| 33 |
27 29 31 32
|
syl3anc |
|
| 34 |
25 33
|
bitr3d |
|
| 35 |
34
|
necon3bid |
|
| 36 |
22 35
|
mpbid |
|
| 37 |
|
simp3 |
|
| 38 |
10 19 1
|
latmle1 |
|
| 39 |
27 29 31 38
|
syl3anc |
|
| 40 |
|
hlpos |
|
| 41 |
26 40
|
syl |
|
| 42 |
10 3
|
atbase |
|
| 43 |
42
|
3ad2ant2 |
|
| 44 |
27 29 31 16
|
syl3anc |
|
| 45 |
|
simp2 |
|
| 46 |
10 19 27 43 44 29 37 39
|
lattrd |
|
| 47 |
|
eqid |
|
| 48 |
19 47 3 4
|
atcvrlln2 |
|
| 49 |
26 45 28 46 48
|
syl31anc |
|
| 50 |
10 19 47
|
cvrnbtwn4 |
|
| 51 |
41 43 29 44 49 50
|
syl131anc |
|
| 52 |
37 39 51
|
mpbi2and |
|
| 53 |
|
neor |
|
| 54 |
52 53
|
sylib |
|
| 55 |
54
|
necon1d |
|
| 56 |
36 55
|
mpd |
|
| 57 |
56
|
3exp |
|
| 58 |
57
|
reximdvai |
|
| 59 |
21 58
|
mpd |
|
| 60 |
|
risset |
|
| 61 |
59 60
|
sylibr |
|