Step |
Hyp |
Ref |
Expression |
1 |
|
2llnmat.m |
|
2 |
|
2llnmat.z |
|
3 |
|
2llnmat.a |
|
4 |
|
2llnmat.n |
|
5 |
|
simpl1 |
|
6 |
|
hlatl |
|
7 |
5 6
|
syl |
|
8 |
5
|
hllatd |
|
9 |
|
simpl2 |
|
10 |
|
eqid |
|
11 |
10 4
|
llnbase |
|
12 |
9 11
|
syl |
|
13 |
|
simpl3 |
|
14 |
10 4
|
llnbase |
|
15 |
13 14
|
syl |
|
16 |
10 1
|
latmcl |
|
17 |
8 12 15 16
|
syl3anc |
|
18 |
|
simprr |
|
19 |
|
eqid |
|
20 |
10 19 2 3
|
atlex |
|
21 |
7 17 18 20
|
syl3anc |
|
22 |
|
simp1rl |
|
23 |
|
simp1l |
|
24 |
19 4
|
llncmp |
|
25 |
23 24
|
syl |
|
26 |
|
simp1l1 |
|
27 |
26
|
hllatd |
|
28 |
|
simp1l2 |
|
29 |
28 11
|
syl |
|
30 |
|
simp1l3 |
|
31 |
30 14
|
syl |
|
32 |
10 19 1
|
latleeqm1 |
|
33 |
27 29 31 32
|
syl3anc |
|
34 |
25 33
|
bitr3d |
|
35 |
34
|
necon3bid |
|
36 |
22 35
|
mpbid |
|
37 |
|
simp3 |
|
38 |
10 19 1
|
latmle1 |
|
39 |
27 29 31 38
|
syl3anc |
|
40 |
|
hlpos |
|
41 |
26 40
|
syl |
|
42 |
10 3
|
atbase |
|
43 |
42
|
3ad2ant2 |
|
44 |
27 29 31 16
|
syl3anc |
|
45 |
|
simp2 |
|
46 |
10 19 27 43 44 29 37 39
|
lattrd |
|
47 |
|
eqid |
|
48 |
19 47 3 4
|
atcvrlln2 |
|
49 |
26 45 28 46 48
|
syl31anc |
|
50 |
10 19 47
|
cvrnbtwn4 |
|
51 |
41 43 29 44 49 50
|
syl131anc |
|
52 |
37 39 51
|
mpbi2and |
|
53 |
|
neor |
|
54 |
52 53
|
sylib |
|
55 |
54
|
necon1d |
|
56 |
36 55
|
mpd |
|
57 |
56
|
3exp |
|
58 |
57
|
reximdvai |
|
59 |
21 58
|
mpd |
|
60 |
|
risset |
|
61 |
59 60
|
sylibr |
|