Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem1.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalem1.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
8 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
9 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
10 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
11 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
12 |
3 4
|
hlatj4 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∨ ( 𝑄 ∨ 𝑇 ) ) ) |
13 |
7 8 9 10 11 12
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∨ ( 𝑄 ∨ 𝑇 ) ) ) |
14 |
1 2 3 4 5 6
|
dalempjsen |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
15 |
1 2 3 4 5 6
|
dalemqnet |
⊢ ( 𝜑 → 𝑄 ≠ 𝑇 ) |
16 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
17 |
3 4 16
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ 𝑄 ≠ 𝑇 ) → ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
18 |
7 9 11 15 17
|
syl31anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
19 |
1 2 3 4 5 6
|
dalem1 |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ) |
20 |
1 2 3 4 5 6
|
dalemcea |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
21 |
1
|
dalemclpjs |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
22 |
1
|
dalemclqjt |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) |
23 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
24 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
25 |
2 23 24 4 16
|
2llnm4 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐶 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
26 |
7 20 14 18 21 22 25
|
syl132anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
27 |
23 24 4 16
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ) |
28 |
7 14 18 19 26 27
|
syl32anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ) |
29 |
3 23 4 16 5
|
2llnmj |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑆 ) ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ 𝑂 ) ) |
30 |
7 14 18 29
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑆 ) ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ 𝑂 ) ) |
31 |
28 30
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ 𝑂 ) |
32 |
13 31
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝑂 ) |