Metamath Proof Explorer


Theorem dalem45

Description: Lemma for dath . Dummy center of perspectivity c is not on the line G H . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem44.m ˙=meetK
dalem44.o O=LPlanesK
dalem44.y Y=P˙Q˙R
dalem44.z Z=S˙T˙U
dalem44.g G=c˙P˙d˙S
dalem44.h H=c˙Q˙d˙T
dalem44.i I=c˙R˙d˙U
Assertion dalem45 φY=Zψ¬c˙G˙H

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem44.m ˙=meetK
7 dalem44.o O=LPlanesK
8 dalem44.y Y=P˙Q˙R
9 dalem44.z Z=S˙T˙U
10 dalem44.g G=c˙P˙d˙S
11 dalem44.h H=c˙Q˙d˙T
12 dalem44.i I=c˙R˙d˙U
13 1 dalemkelat φKLat
14 13 3ad2ant1 φY=ZψKLat
15 5 4 dalemcceb ψcBaseK
16 15 3ad2ant3 φY=ZψcBaseK
17 1 dalemkehl φKHL
18 17 3ad2ant1 φY=ZψKHL
19 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
20 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
21 eqid BaseK=BaseK
22 21 3 4 hlatjcl KHLGAHAG˙HBaseK
23 18 19 20 22 syl3anc φY=ZψG˙HBaseK
24 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
25 21 4 atbase IAIBaseK
26 24 25 syl φY=ZψIBaseK
27 1 2 3 4 5 6 7 8 9 10 11 12 dalem44 φY=Zψ¬c˙G˙H˙I
28 21 2 3 latnlej2l KLatcBaseKG˙HBaseKIBaseK¬c˙G˙H˙I¬c˙G˙H
29 14 16 23 26 27 28 syl131anc φY=Zψ¬c˙G˙H