Metamath Proof Explorer


Theorem dalem8

Description: Lemma for dath . Plane Z belongs to the 3-dimensional space. (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem6.o O=LPlanesK
dalem6.y Y=P˙Q˙R
dalem6.z Z=S˙T˙U
dalem6.w W=Y˙C
Assertion dalem8 φZ˙W

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem6.o O=LPlanesK
6 dalem6.y Y=P˙Q˙R
7 dalem6.z Z=S˙T˙U
8 dalem6.w W=Y˙C
9 1 2 3 4 5 6 7 8 dalem6 φS˙W
10 1 2 3 4 5 6 7 8 dalem7 φT˙W
11 1 dalemkelat φKLat
12 1 4 dalemseb φSBaseK
13 1 4 dalemteb φTBaseK
14 1 5 dalemyeb φYBaseK
15 1 4 dalemceb φCBaseK
16 eqid BaseK=BaseK
17 16 3 latjcl KLatYBaseKCBaseKY˙CBaseK
18 11 14 15 17 syl3anc φY˙CBaseK
19 8 18 eqeltrid φWBaseK
20 16 2 3 latjle12 KLatSBaseKTBaseKWBaseKS˙WT˙WS˙T˙W
21 11 12 13 19 20 syl13anc φS˙WT˙WS˙T˙W
22 9 10 21 mpbi2and φS˙T˙W
23 1 2 3 4 5 6 8 dalem5 φU˙W
24 1 3 4 dalemsjteb φS˙TBaseK
25 1 4 dalemueb φUBaseK
26 16 2 3 latjle12 KLatS˙TBaseKUBaseKWBaseKS˙T˙WU˙WS˙T˙U˙W
27 11 24 25 19 26 syl13anc φS˙T˙WU˙WS˙T˙U˙W
28 22 23 27 mpbi2and φS˙T˙U˙W
29 7 28 eqbrtrid φZ˙W