Description: Lemma for dath . Plane Z belongs to the 3-dimensional space. (Contributed by NM, 21-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem6.o | |
||
dalem6.y | |
||
dalem6.z | |
||
dalem6.w | |
||
Assertion | dalem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem6.o | |
|
6 | dalem6.y | |
|
7 | dalem6.z | |
|
8 | dalem6.w | |
|
9 | 1 2 3 4 5 6 7 8 | dalem6 | |
10 | 1 2 3 4 5 6 7 8 | dalem7 | |
11 | 1 | dalemkelat | |
12 | 1 4 | dalemseb | |
13 | 1 4 | dalemteb | |
14 | 1 5 | dalemyeb | |
15 | 1 4 | dalemceb | |
16 | eqid | |
|
17 | 16 3 | latjcl | |
18 | 11 14 15 17 | syl3anc | |
19 | 8 18 | eqeltrid | |
20 | 16 2 3 | latjle12 | |
21 | 11 12 13 19 20 | syl13anc | |
22 | 9 10 21 | mpbi2and | |
23 | 1 2 3 4 5 6 8 | dalem5 | |
24 | 1 3 4 | dalemsjteb | |
25 | 1 4 | dalemueb | |
26 | 16 2 3 | latjle12 | |
27 | 11 24 25 19 26 | syl13anc | |
28 | 22 23 27 | mpbi2and | |
29 | 7 28 | eqbrtrid | |