Metamath Proof Explorer


Theorem dalem8

Description: Lemma for dath . Plane Z belongs to the 3-dimensional space. (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem6.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem6.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem6.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem6.w 𝑊 = ( 𝑌 𝐶 )
Assertion dalem8 ( 𝜑𝑍 𝑊 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem6.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem6.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 dalem6.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
8 dalem6.w 𝑊 = ( 𝑌 𝐶 )
9 1 2 3 4 5 6 7 8 dalem6 ( 𝜑𝑆 𝑊 )
10 1 2 3 4 5 6 7 8 dalem7 ( 𝜑𝑇 𝑊 )
11 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
12 1 4 dalemseb ( 𝜑𝑆 ∈ ( Base ‘ 𝐾 ) )
13 1 4 dalemteb ( 𝜑𝑇 ∈ ( Base ‘ 𝐾 ) )
14 1 5 dalemyeb ( 𝜑𝑌 ∈ ( Base ‘ 𝐾 ) )
15 1 4 dalemceb ( 𝜑𝐶 ∈ ( Base ‘ 𝐾 ) )
16 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
17 16 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 𝐶 ) ∈ ( Base ‘ 𝐾 ) )
18 11 14 15 17 syl3anc ( 𝜑 → ( 𝑌 𝐶 ) ∈ ( Base ‘ 𝐾 ) )
19 8 18 eqeltrid ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
20 16 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑆 𝑊𝑇 𝑊 ) ↔ ( 𝑆 𝑇 ) 𝑊 ) )
21 11 12 13 19 20 syl13anc ( 𝜑 → ( ( 𝑆 𝑊𝑇 𝑊 ) ↔ ( 𝑆 𝑇 ) 𝑊 ) )
22 9 10 21 mpbi2and ( 𝜑 → ( 𝑆 𝑇 ) 𝑊 )
23 1 2 3 4 5 6 8 dalem5 ( 𝜑𝑈 𝑊 )
24 1 3 4 dalemsjteb ( 𝜑 → ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
25 1 4 dalemueb ( 𝜑𝑈 ∈ ( Base ‘ 𝐾 ) )
26 16 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑆 𝑇 ) 𝑊𝑈 𝑊 ) ↔ ( ( 𝑆 𝑇 ) 𝑈 ) 𝑊 ) )
27 11 24 25 19 26 syl13anc ( 𝜑 → ( ( ( 𝑆 𝑇 ) 𝑊𝑈 𝑊 ) ↔ ( ( 𝑆 𝑇 ) 𝑈 ) 𝑊 ) )
28 22 23 27 mpbi2and ( 𝜑 → ( ( 𝑆 𝑇 ) 𝑈 ) 𝑊 )
29 7 28 eqbrtrid ( 𝜑𝑍 𝑊 )