Metamath Proof Explorer


Theorem dchrresb

Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrresb.g G=DChrN
dchrresb.z Z=/N
dchrresb.b D=BaseG
dchrresb.u U=UnitZ
dchrresb.x φXD
dchrresb.Y φYD
Assertion dchrresb φXU=YUX=Y

Proof

Step Hyp Ref Expression
1 dchrresb.g G=DChrN
2 dchrresb.z Z=/N
3 dchrresb.b D=BaseG
4 dchrresb.u U=UnitZ
5 dchrresb.x φXD
6 dchrresb.Y φYD
7 eqid BaseZ=BaseZ
8 1 2 3 7 5 dchrf φX:BaseZ
9 8 ffnd φXFnBaseZ
10 1 2 3 7 6 dchrf φY:BaseZ
11 10 ffnd φYFnBaseZ
12 7 4 unitss UBaseZ
13 fvreseq XFnBaseZYFnBaseZUBaseZXU=YUkUXk=Yk
14 12 13 mpan2 XFnBaseZYFnBaseZXU=YUkUXk=Yk
15 9 11 14 syl2anc φXU=YUkUXk=Yk
16 1 2 3 4 5 6 dchreq φX=YkUXk=Yk
17 15 16 bitr4d φXU=YUX=Y