Metamath Proof Explorer


Theorem decpmatval

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmatval.a A=NMatR
decpmatval.b B=BaseA
Assertion decpmatval MBK0MdecompPMatK=iN,jNcoe1iMjK

Proof

Step Hyp Ref Expression
1 decpmatval.a A=NMatR
2 decpmatval.b B=BaseA
3 decpmatval0 MBK0MdecompPMatK=idomdomM,jdomdomMcoe1iMjK
4 eqid BaseR=BaseR
5 1 4 2 matbas2i MBMBaseRN×N
6 elmapi MBaseRN×NM:N×NBaseR
7 fdm M:N×NBaseRdomM=N×N
8 7 dmeqd M:N×NBaseRdomdomM=domN×N
9 dmxpid domN×N=N
10 8 9 eqtrdi M:N×NBaseRdomdomM=N
11 5 6 10 3syl MBdomdomM=N
12 11 adantr MBK0domdomM=N
13 eqidd MBK0coe1iMjK=coe1iMjK
14 12 12 13 mpoeq123dv MBK0idomdomM,jdomdomMcoe1iMjK=iN,jNcoe1iMjK
15 3 14 eqtrd MBK0MdecompPMatK=iN,jNcoe1iMjK