Metamath Proof Explorer


Theorem decpmatval0

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019)

Ref Expression
Assertion decpmatval0 MVK0MdecompPMatK=idomdomM,jdomdomMcoe1iMjK

Proof

Step Hyp Ref Expression
1 df-decpmat decompPMat=mV,k0idomdomm,jdomdommcoe1imjk
2 1 a1i MVK0decompPMat=mV,k0idomdomm,jdomdommcoe1imjk
3 dmeq m=Mdomm=domM
4 3 adantr m=Mk=Kdomm=domM
5 4 dmeqd m=Mk=Kdomdomm=domdomM
6 oveq m=Mimj=iMj
7 6 fveq2d m=Mcoe1imj=coe1iMj
8 7 adantr m=Mk=Kcoe1imj=coe1iMj
9 simpr m=Mk=Kk=K
10 8 9 fveq12d m=Mk=Kcoe1imjk=coe1iMjK
11 5 5 10 mpoeq123dv m=Mk=Kidomdomm,jdomdommcoe1imjk=idomdomM,jdomdomMcoe1iMjK
12 11 adantl MVK0m=Mk=Kidomdomm,jdomdommcoe1imjk=idomdomM,jdomdomMcoe1iMjK
13 elex MVMV
14 13 adantr MVK0MV
15 simpr MVK0K0
16 dmexg MVdomMV
17 16 dmexd MVdomdomMV
18 17 17 jca MVdomdomMVdomdomMV
19 18 adantr MVK0domdomMVdomdomMV
20 mpoexga domdomMVdomdomMVidomdomM,jdomdomMcoe1iMjKV
21 19 20 syl MVK0idomdomM,jdomdomMcoe1iMjKV
22 2 12 14 15 21 ovmpod MVK0MdecompPMatK=idomdomM,jdomdomMcoe1iMjK