Metamath Proof Explorer


Theorem deg1ldgdomn

Description: A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
deg1nn0cl.b B=BaseP
deg1ldgdomn.e E=RLRegR
deg1ldgdomn.a A=coe1F
Assertion deg1ldgdomn RDomnFBF0˙ADFE

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 deg1nn0cl.b B=BaseP
5 deg1ldgdomn.e E=RLRegR
6 deg1ldgdomn.a A=coe1F
7 simp1 RDomnFBF0˙RDomn
8 eqid BaseR=BaseR
9 6 4 2 8 coe1f FBA:0BaseR
10 9 3ad2ant2 RDomnFBF0˙A:0BaseR
11 domnring RDomnRRing
12 1 2 3 4 deg1nn0cl RRingFBF0˙DF0
13 11 12 syl3an1 RDomnFBF0˙DF0
14 10 13 ffvelcdmd RDomnFBF0˙ADFBaseR
15 eqid 0R=0R
16 1 2 3 4 15 6 deg1ldg RRingFBF0˙ADF0R
17 11 16 syl3an1 RDomnFBF0˙ADF0R
18 8 5 15 domnrrg RDomnADFBaseRADF0RADFE
19 7 14 17 18 syl3anc RDomnFBF0˙ADFE