Metamath Proof Explorer


Definition df-gzf

Description: Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzf ZF=m|TrmmAxExtmAxPowmAxUnmAxRegmAxInfuFmlaωmAxRepu

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzf classZF
1 vm setvarm
2 1 cv setvarm
3 2 wtr wffTrm
4 cprv class
5 cgze classAxExt
6 2 5 4 wbr wffmAxExt
7 cgzp classAxPow
8 2 7 4 wbr wffmAxPow
9 3 6 8 w3a wffTrmmAxExtmAxPow
10 cgzu classAxUn
11 2 10 4 wbr wffmAxUn
12 cgzg classAxReg
13 2 12 4 wbr wffmAxReg
14 cgzi classAxInf
15 2 14 4 wbr wffmAxInf
16 11 13 15 w3a wffmAxUnmAxRegmAxInf
17 vu setvaru
18 cfmla classFmla
19 com classω
20 19 18 cfv classFmlaω
21 cgzr classAxRep
22 17 cv setvaru
23 22 21 cfv classAxRepu
24 2 23 4 wbr wffmAxRepu
25 24 17 20 wral wffuFmlaωmAxRepu
26 9 16 25 w3a wffTrmmAxExtmAxPowmAxUnmAxRegmAxInfuFmlaωmAxRepu
27 26 1 cab classm|TrmmAxExtmAxPowmAxUnmAxRegmAxInfuFmlaωmAxRepu
28 0 27 wceq wffZF=m|TrmmAxExtmAxPowmAxUnmAxRegmAxInfuFmlaωmAxRepu