Metamath Proof Explorer


Definition df-gzf

Description: Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzf ZF = m | Tr m m AxExt m AxPow m AxUn m AxReg m AxInf u Fmla ω m AxRep u

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzf class ZF
1 vm setvar m
2 1 cv setvar m
3 2 wtr wff Tr m
4 cprv class
5 cgze class AxExt
6 2 5 4 wbr wff m AxExt
7 cgzp class AxPow
8 2 7 4 wbr wff m AxPow
9 3 6 8 w3a wff Tr m m AxExt m AxPow
10 cgzu class AxUn
11 2 10 4 wbr wff m AxUn
12 cgzg class AxReg
13 2 12 4 wbr wff m AxReg
14 cgzi class AxInf
15 2 14 4 wbr wff m AxInf
16 11 13 15 w3a wff m AxUn m AxReg m AxInf
17 vu setvar u
18 cfmla class Fmla
19 com class ω
20 19 18 cfv class Fmla ω
21 cgzr class AxRep
22 17 cv setvar u
23 22 21 cfv class AxRep u
24 2 23 4 wbr wff m AxRep u
25 24 17 20 wral wff u Fmla ω m AxRep u
26 9 16 25 w3a wff Tr m m AxExt m AxPow m AxUn m AxReg m AxInf u Fmla ω m AxRep u
27 26 1 cab class m | Tr m m AxExt m AxPow m AxUn m AxReg m AxInf u Fmla ω m AxRep u
28 0 27 wceq wff ZF = m | Tr m m AxExt m AxPow m AxUn m AxReg m AxInf u Fmla ω m AxRep u