Metamath Proof Explorer


Definition df-pin

Description: Define the n-th homotopy group, which is formed by taking the n -th loop space and forming the quotient under the relation of path homotopy equivalence in the base space of the n -th loop space, which is the n - 1 -th loop space. For n = 0 , since this is not well-defined we replace this relation with the path-connectedness relation, so that the 0 -th homotopy group is the set of path components of X . (Since the 0 -th loop space does not have a group operation, neither does the 0 -th homotopy group, but the rest are genuine groups.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-pin π𝑛=jTop,pjn01stjΩ𝑛pn/𝑠ifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpin classπ𝑛
1 vj setvarj
2 ctop classTop
3 vp setvarp
4 1 cv setvarj
5 4 cuni classj
6 vn setvarn
7 cn0 class0
8 c1st class1st
9 comn classΩ𝑛
10 3 cv setvarp
11 4 10 9 co classjΩ𝑛p
12 6 cv setvarn
13 12 11 cfv classjΩ𝑛pn
14 13 8 cfv class1stjΩ𝑛pn
15 cqus class/𝑠
16 cc0 class0
17 12 16 wceq wffn=0
18 vx setvarx
19 vy setvary
20 vf setvarf
21 cii classII
22 ccn classCn
23 21 4 22 co classIICnj
24 20 cv setvarf
25 16 24 cfv classf0
26 18 cv setvarx
27 25 26 wceq wfff0=x
28 c1 class1
29 28 24 cfv classf1
30 19 cv setvary
31 29 30 wceq wfff1=y
32 27 31 wa wfff0=xf1=y
33 32 20 23 wrex wfffIICnjf0=xf1=y
34 33 18 19 copab classxy|fIICnjf0=xf1=y
35 cphtpc classph
36 ctopn classTopOpen
37 cmin class
38 12 28 37 co classn1
39 38 11 cfv classjΩ𝑛pn1
40 39 8 cfv class1stjΩ𝑛pn1
41 40 36 cfv classTopOpen1stjΩ𝑛pn1
42 41 35 cfv classphTopOpen1stjΩ𝑛pn1
43 17 34 42 cif classifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1
44 14 43 15 co class1stjΩ𝑛pn/𝑠ifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1
45 6 7 44 cmpt classn01stjΩ𝑛pn/𝑠ifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1
46 1 3 2 5 45 cmpo classjTop,pjn01stjΩ𝑛pn/𝑠ifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1
47 0 46 wceq wffπ𝑛=jTop,pjn01stjΩ𝑛pn/𝑠ifn=0xy|fIICnjf0=xf1=yphTopOpen1stjΩ𝑛pn1