Description: Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-plfl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpfl | |
|
1 | vr | |
|
2 | cvv | |
|
3 | vp | |
|
4 | cpl1 | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vs | |
|
8 | crsp | |
|
9 | 7 | cv | |
10 | 9 8 | cfv | |
11 | 3 | cv | |
12 | 11 | csn | |
13 | 12 10 | cfv | |
14 | vi | |
|
15 | vz | |
|
16 | cbs | |
|
17 | 5 16 | cfv | |
18 | 15 | cv | |
19 | cvsca | |
|
20 | 9 19 | cfv | |
21 | cur | |
|
22 | 9 21 | cfv | |
23 | 18 22 20 | co | |
24 | cqg | |
|
25 | 14 | cv | |
26 | 9 25 24 | co | |
27 | 23 26 | cec | |
28 | 15 17 27 | cmpt | |
29 | vf | |
|
30 | cqus | |
|
31 | 9 26 30 | co | |
32 | vt | |
|
33 | 32 | cv | |
34 | ctng | |
|
35 | vn | |
|
36 | cabv | |
|
37 | 33 36 | cfv | |
38 | 35 | cv | |
39 | 29 | cv | |
40 | 38 39 | ccom | |
41 | cnm | |
|
42 | 5 41 | cfv | |
43 | 40 42 | wceq | |
44 | 43 35 37 | crio | |
45 | 33 44 34 | co | |
46 | csts | |
|
47 | cple | |
|
48 | cnx | |
|
49 | 48 47 | cfv | |
50 | 33 16 | cfv | |
51 | vq | |
|
52 | cdg1 | |
|
53 | 51 | cv | |
54 | 5 53 52 | co | |
55 | clt | |
|
56 | 5 11 52 | co | |
57 | 54 56 55 | wbr | |
58 | 57 51 18 | crio | |
59 | 15 50 58 | cmpt | |
60 | vg | |
|
61 | 60 | cv | |
62 | 61 | ccnv | |
63 | 9 47 | cfv | |
64 | 63 61 | ccom | |
65 | 62 64 | ccom | |
66 | 60 59 65 | csb | |
67 | 49 66 | cop | |
68 | 45 67 46 | co | |
69 | 32 31 68 | csb | |
70 | 69 39 | cop | |
71 | 29 28 70 | csb | |
72 | 14 13 71 | csb | |
73 | 7 6 72 | csb | |
74 | 1 3 2 2 73 | cmpo | |
75 | 0 74 | wceq | |