Metamath Proof Explorer


Definition df-plfl

Description: Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-plfl polyFld=rV,pVPoly1r/sRSpansp/izBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpfl classpolyFld
1 vr setvarr
2 cvv classV
3 vp setvarp
4 cpl1 classPoly1
5 1 cv setvarr
6 5 4 cfv classPoly1r
7 vs setvars
8 crsp classRSpan
9 7 cv setvars
10 9 8 cfv classRSpans
11 3 cv setvarp
12 11 csn classp
13 12 10 cfv classRSpansp
14 vi setvari
15 vz setvarz
16 cbs classBase
17 5 16 cfv classBaser
18 15 cv setvarz
19 cvsca class𝑠
20 9 19 cfv classs
21 cur class1r
22 9 21 cfv class1s
23 18 22 20 co classzs1s
24 cqg class~QG
25 14 cv setvari
26 9 25 24 co classs~QGi
27 23 26 cec classzs1ss~QGi
28 15 17 27 cmpt classzBaserzs1ss~QGi
29 vf setvarf
30 cqus class/𝑠
31 9 26 30 co classs/𝑠s~QGi
32 vt setvart
33 32 cv setvart
34 ctng classtoNrmGrp
35 vn setvarn
36 cabv classAbsVal
37 33 36 cfv classAbsValt
38 35 cv setvarn
39 29 cv setvarf
40 38 39 ccom classnf
41 cnm classnorm
42 5 41 cfv classnormr
43 40 42 wceq wffnf=normr
44 43 35 37 crio classιnAbsValt|nf=normr
45 33 44 34 co classttoNrmGrpιnAbsValt|nf=normr
46 csts classsSet
47 cple classle
48 cnx classndx
49 48 47 cfv classndx
50 33 16 cfv classBaset
51 vq setvarq
52 cdg1 classdeg1
53 51 cv setvarq
54 5 53 52 co classrdeg1q
55 clt class<
56 5 11 52 co classrdeg1p
57 54 56 55 wbr wffrdeg1q<rdeg1p
58 57 51 18 crio classιqz|rdeg1q<rdeg1p
59 15 50 58 cmpt classzBasetιqz|rdeg1q<rdeg1p
60 vg setvarg
61 60 cv setvarg
62 61 ccnv classg-1
63 9 47 cfv classs
64 63 61 ccom classsg
65 62 64 ccom classg-1sg
66 60 59 65 csb classzBasetιqz|rdeg1q<rdeg1p/gg-1sg
67 49 66 cop classndxzBasetιqz|rdeg1q<rdeg1p/gg-1sg
68 45 67 46 co classttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sg
69 32 31 68 csb classs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sg
70 69 39 cop classs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf
71 29 28 70 csb classzBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf
72 14 13 71 csb classRSpansp/izBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf
73 7 6 72 csb classPoly1r/sRSpansp/izBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf
74 1 3 2 2 73 cmpo classrV,pVPoly1r/sRSpansp/izBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf
75 0 74 wceq wffpolyFld=rV,pVPoly1r/sRSpansp/izBaserzs1ss~QGi/fs/𝑠s~QGi/tttoNrmGrpιnAbsValt|nf=normrsSetndxzBasetιqz|rdeg1q<rdeg1p/gg-1sgf