Metamath Proof Explorer


Definition df-pm2mp

Description: Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019)

Ref Expression
Assertion df-pm2mp pMatToMatPoly = n Fin , r V m Base n Mat Poly 1 r n Mat r / a Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpm2mp class pMatToMatPoly
1 vn setvar n
2 cfn class Fin
3 vr setvar r
4 cvv class V
5 vm setvar m
6 cbs class Base
7 1 cv setvar n
8 cmat class Mat
9 cpl1 class Poly 1
10 3 cv setvar r
11 10 9 cfv class Poly 1 r
12 7 11 8 co class n Mat Poly 1 r
13 12 6 cfv class Base n Mat Poly 1 r
14 7 10 8 co class n Mat r
15 va setvar a
16 15 cv setvar a
17 16 9 cfv class Poly 1 a
18 vq setvar q
19 18 cv setvar q
20 cgsu class Σ𝑔
21 vk setvar k
22 cn0 class 0
23 5 cv setvar m
24 cdecpmat class decompPMat
25 21 cv setvar k
26 23 25 24 co class m decompPMat k
27 cvsca class 𝑠
28 19 27 cfv class q
29 cmg class 𝑔
30 cmgp class mulGrp
31 19 30 cfv class mulGrp q
32 31 29 cfv class mulGrp q
33 cv1 class var 1
34 16 33 cfv class var 1 a
35 25 34 32 co class k mulGrp q var 1 a
36 26 35 28 co class m decompPMat k q k mulGrp q var 1 a
37 21 22 36 cmpt class k 0 m decompPMat k q k mulGrp q var 1 a
38 19 37 20 co class q k 0 m decompPMat k q k mulGrp q var 1 a
39 18 17 38 csb class Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a
40 15 14 39 csb class n Mat r / a Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a
41 5 13 40 cmpt class m Base n Mat Poly 1 r n Mat r / a Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a
42 1 3 2 4 41 cmpo class n Fin , r V m Base n Mat Poly 1 r n Mat r / a Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a
43 0 42 wceq wff pMatToMatPoly = n Fin , r V m Base n Mat Poly 1 r n Mat r / a Poly 1 a / q q k 0 m decompPMat k q k mulGrp q var 1 a