Metamath Proof Explorer


Definition df-pm2mp

Description: Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019)

Ref Expression
Assertion df-pm2mp pMatToMatPoly=nFin,rVmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpm2mp classpMatToMatPoly
1 vn setvarn
2 cfn classFin
3 vr setvarr
4 cvv classV
5 vm setvarm
6 cbs classBase
7 1 cv setvarn
8 cmat classMat
9 cpl1 classPoly1
10 3 cv setvarr
11 10 9 cfv classPoly1r
12 7 11 8 co classnMatPoly1r
13 12 6 cfv classBasenMatPoly1r
14 7 10 8 co classnMatr
15 va setvara
16 15 cv setvara
17 16 9 cfv classPoly1a
18 vq setvarq
19 18 cv setvarq
20 cgsu classΣ𝑔
21 vk setvark
22 cn0 class0
23 5 cv setvarm
24 cdecpmat classdecompPMat
25 21 cv setvark
26 23 25 24 co classmdecompPMatk
27 cvsca class𝑠
28 19 27 cfv classq
29 cmg class𝑔
30 cmgp classmulGrp
31 19 30 cfv classmulGrpq
32 31 29 cfv classmulGrpq
33 cv1 classvar1
34 16 33 cfv classvar1a
35 25 34 32 co classkmulGrpqvar1a
36 26 35 28 co classmdecompPMatkqkmulGrpqvar1a
37 21 22 36 cmpt classk0mdecompPMatkqkmulGrpqvar1a
38 19 37 20 co classqk0mdecompPMatkqkmulGrpqvar1a
39 18 17 38 csb classPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
40 15 14 39 csb classnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
41 5 13 40 cmpt classmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
42 1 3 2 4 41 cmpo classnFin,rVmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
43 0 42 wceq wffpMatToMatPoly=nFin,rVmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a