Metamath Proof Explorer


Definition df-prmidl

Description: Define the class of prime ideals of a ring R . A proper ideal I of R is prime if whenever A B C_ I for ideals A and B , either A C_ I or B C_ I . The more familiar definition using elements rather than ideals is equivalent provided R is commutative; see prmidl2 and isprmidlc . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 14-Jan-2024)

Ref Expression
Assertion df-prmidl Could not format assertion : No typesetting found for |- PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprmidl Could not format PrmIdeal : No typesetting found for class PrmIdeal with typecode class
1 vr setvar r
2 crg class Ring
3 vi setvar i
4 clidl class LIdeal
5 1 cv setvar r
6 5 4 cfv class LIdeal r
7 3 cv setvar i
8 cbs class Base
9 5 8 cfv class Base r
10 7 9 wne wff i Base r
11 va setvar a
12 vb setvar b
13 vx setvar x
14 11 cv setvar a
15 vy setvar y
16 12 cv setvar b
17 13 cv setvar x
18 cmulr class 𝑟
19 5 18 cfv class r
20 15 cv setvar y
21 17 20 19 co class x r y
22 21 7 wcel wff x r y i
23 22 15 16 wral wff y b x r y i
24 23 13 14 wral wff x a y b x r y i
25 14 7 wss wff a i
26 16 7 wss wff b i
27 25 26 wo wff a i b i
28 24 27 wi wff x a y b x r y i a i b i
29 28 12 6 wral wff b LIdeal r x a y b x r y i a i b i
30 29 11 6 wral wff a LIdeal r b LIdeal r x a y b x r y i a i b i
31 10 30 wa wff i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i
32 31 3 6 crab class i LIdeal r | i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i
33 1 2 32 cmpt class r Ring i LIdeal r | i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i
34 0 33 wceq Could not format PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) : No typesetting found for wff PrmIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. a e. ( LIdeal ` r ) A. b e. ( LIdeal ` r ) ( A. x e. a A. y e. b ( x ( .r ` r ) y ) e. i -> ( a C_ i \/ b C_ i ) ) ) } ) with typecode wff