Metamath Proof Explorer


Definition df-xrh

Description: Define an embedding from the extended real number into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Assertion df-xrh *Hom=rVx*ifxℝHomrxifx=+∞lubrℝHomrglbrℝHomr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxrh class *Hom
1 vr setvarr
2 cvv classV
3 vx setvarx
4 cxr class*
5 3 cv setvarx
6 cr class
7 5 6 wcel wffx
8 crrh classℝHom
9 1 cv setvarr
10 9 8 cfv classℝHomr
11 5 10 cfv classℝHomrx
12 cpnf class+∞
13 5 12 wceq wffx=+∞
14 club classlub
15 9 14 cfv classlubr
16 10 6 cima classℝHomr
17 16 15 cfv classlubrℝHomr
18 cglb classglb
19 9 18 cfv classglbr
20 16 19 cfv classglbrℝHomr
21 13 17 20 cif classifx=+∞lubrℝHomrglbrℝHomr
22 7 11 21 cif classifxℝHomrxifx=+∞lubrℝHomrglbrℝHomr
23 3 4 22 cmpt classx*ifxℝHomrxifx=+∞lubrℝHomrglbrℝHomr
24 1 2 23 cmpt classrVx*ifxℝHomrxifx=+∞lubrℝHomrglbrℝHomr
25 0 24 wceq wff *Hom=rVx*ifxℝHomrxifx=+∞lubrℝHomrglbrℝHomr