Description: A proof of the equivalency of the well-ordering theorem weth and the axiom of choice ac7 . (Contributed by Mario Carneiro, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dfac8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac3 | |
|
2 | vex | |
|
3 | vpwex | |
|
4 | raleq | |
|
5 | 4 | exbidv | |
6 | 3 5 | spcv | |
7 | dfac8a | |
|
8 | 2 6 7 | mpsyl | |
9 | dfac8b | |
|
10 | 8 9 | syl | |
11 | 10 | alrimiv | |
12 | vex | |
|
13 | vuniex | |
|
14 | weeq2 | |
|
15 | 14 | exbidv | |
16 | 13 15 | spcv | |
17 | dfac8c | |
|
18 | 12 16 17 | mpsyl | |
19 | 18 | alrimiv | |
20 | 11 19 | impbii | |
21 | 1 20 | bitri | |