Metamath Proof Explorer


Theorem dfac8

Description: A proof of the equivalency of the well-ordering theorem weth and the axiom of choice ac7 . (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion dfac8 CHOICExrrWex

Proof

Step Hyp Ref Expression
1 dfac3 CHOICEyfzyzfzz
2 vex xV
3 vpwex 𝒫xV
4 raleq y=𝒫xzyzfzzz𝒫xzfzz
5 4 exbidv y=𝒫xfzyzfzzfz𝒫xzfzz
6 3 5 spcv yfzyzfzzfz𝒫xzfzz
7 dfac8a xVfz𝒫xzfzzxdomcard
8 2 6 7 mpsyl yfzyzfzzxdomcard
9 dfac8b xdomcardrrWex
10 8 9 syl yfzyzfzzrrWex
11 10 alrimiv yfzyzfzzxrrWex
12 vex yV
13 vuniex yV
14 weeq2 x=yrWexrWey
15 14 exbidv x=yrrWexrrWey
16 13 15 spcv xrrWexrrWey
17 dfac8c yVrrWeyfzyzfzz
18 12 16 17 mpsyl xrrWexfzyzfzz
19 18 alrimiv xrrWexyfzyzfzz
20 11 19 impbii yfzyzfzzxrrWex
21 1 20 bitri CHOICExrrWex