Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dfac8b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 | |
|
2 | bren | |
|
3 | 1 2 | sylib | |
4 | sqxpexg | |
|
5 | incom | |
|
6 | inex1g | |
|
7 | 5 6 | eqeltrid | |
8 | 4 7 | syl | |
9 | f1ocnv | |
|
10 | cardon | |
|
11 | 10 | onordi | |
12 | ordwe | |
|
13 | 11 12 | ax-mp | |
14 | eqid | |
|
15 | 14 | f1owe | |
16 | 9 13 15 | mpisyl | |
17 | weinxp | |
|
18 | 16 17 | sylib | |
19 | weeq1 | |
|
20 | 19 | spcegv | |
21 | 8 18 20 | syl2im | |
22 | 21 | exlimdv | |
23 | 3 22 | mpd | |