Metamath Proof Explorer


Theorem dfac8b

Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dfac8b AdomcardxxWeA

Proof

Step Hyp Ref Expression
1 cardid2 AdomcardcardAA
2 bren cardAAff:cardA1-1 ontoA
3 1 2 sylib Adomcardff:cardA1-1 ontoA
4 sqxpexg AdomcardA×AV
5 incom zw|f-1zEf-1wA×A=A×Azw|f-1zEf-1w
6 inex1g A×AVA×Azw|f-1zEf-1wV
7 5 6 eqeltrid A×AVzw|f-1zEf-1wA×AV
8 4 7 syl Adomcardzw|f-1zEf-1wA×AV
9 f1ocnv f:cardA1-1 ontoAf-1:A1-1 ontocardA
10 cardon cardAOn
11 10 onordi OrdcardA
12 ordwe OrdcardAEWecardA
13 11 12 ax-mp EWecardA
14 eqid zw|f-1zEf-1w=zw|f-1zEf-1w
15 14 f1owe f-1:A1-1 ontocardAEWecardAzw|f-1zEf-1wWeA
16 9 13 15 mpisyl f:cardA1-1 ontoAzw|f-1zEf-1wWeA
17 weinxp zw|f-1zEf-1wWeAzw|f-1zEf-1wA×AWeA
18 16 17 sylib f:cardA1-1 ontoAzw|f-1zEf-1wA×AWeA
19 weeq1 x=zw|f-1zEf-1wA×AxWeAzw|f-1zEf-1wA×AWeA
20 19 spcegv zw|f-1zEf-1wA×AVzw|f-1zEf-1wA×AWeAxxWeA
21 8 18 20 syl2im Adomcardf:cardA1-1 ontoAxxWeA
22 21 exlimdv Adomcardff:cardA1-1 ontoAxxWeA
23 3 22 mpd AdomcardxxWeA