| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac3 |
|
| 2 |
|
vex |
|
| 3 |
2
|
rnex |
|
| 4 |
|
raleq |
|
| 5 |
4
|
exbidv |
|
| 6 |
3 5
|
spcv |
|
| 7 |
|
df-nel |
|
| 8 |
7
|
biimpi |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
|
fvelrn |
|
| 11 |
10
|
adantlr |
|
| 12 |
|
eleq1 |
|
| 13 |
11 12
|
syl5ibcom |
|
| 14 |
13
|
necon3bd |
|
| 15 |
9 14
|
mpd |
|
| 16 |
15
|
adantlr |
|
| 17 |
|
neeq1 |
|
| 18 |
|
fveq2 |
|
| 19 |
|
id |
|
| 20 |
18 19
|
eleq12d |
|
| 21 |
17 20
|
imbi12d |
|
| 22 |
|
simplr |
|
| 23 |
10
|
ad4ant14 |
|
| 24 |
21 22 23
|
rspcdva |
|
| 25 |
16 24
|
mpd |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
2
|
dmex |
|
| 28 |
|
mptelixpg |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
sylibr |
|
| 31 |
30
|
ne0d |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
exlimdv |
|
| 34 |
6 33
|
syl5com |
|
| 35 |
34
|
alrimiv |
|
| 36 |
|
fnresi |
|
| 37 |
|
fnfun |
|
| 38 |
36 37
|
ax-mp |
|
| 39 |
|
neldifsn |
|
| 40 |
|
vex |
|
| 41 |
40
|
difexi |
|
| 42 |
|
resiexg |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
|
funeq |
|
| 45 |
|
rneq |
|
| 46 |
|
rnresi |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
47
|
eleq2d |
|
| 49 |
48
|
notbid |
|
| 50 |
7 49
|
bitrid |
|
| 51 |
44 50
|
anbi12d |
|
| 52 |
|
dmeq |
|
| 53 |
|
dmresi |
|
| 54 |
52 53
|
eqtrdi |
|
| 55 |
54
|
ixpeq1d |
|
| 56 |
|
fveq1 |
|
| 57 |
|
fvresi |
|
| 58 |
56 57
|
sylan9eq |
|
| 59 |
58
|
ixpeq2dva |
|
| 60 |
55 59
|
eqtrd |
|
| 61 |
60
|
neeq1d |
|
| 62 |
51 61
|
imbi12d |
|
| 63 |
43 62
|
spcv |
|
| 64 |
38 39 63
|
mp2ani |
|
| 65 |
|
n0 |
|
| 66 |
|
vex |
|
| 67 |
66
|
elixp |
|
| 68 |
|
eldifsn |
|
| 69 |
68
|
imbi1i |
|
| 70 |
|
impexp |
|
| 71 |
69 70
|
bitri |
|
| 72 |
71
|
ralbii2 |
|
| 73 |
|
neeq1 |
|
| 74 |
|
fveq2 |
|
| 75 |
|
id |
|
| 76 |
74 75
|
eleq12d |
|
| 77 |
73 76
|
imbi12d |
|
| 78 |
77
|
cbvralvw |
|
| 79 |
72 78
|
bitri |
|
| 80 |
79
|
biimpi |
|
| 81 |
67 80
|
simplbiim |
|
| 82 |
81
|
eximi |
|
| 83 |
65 82
|
sylbi |
|
| 84 |
64 83
|
syl |
|
| 85 |
84
|
alrimiv |
|
| 86 |
35 85
|
impbii |
|
| 87 |
1 86
|
bitri |
|