Metamath Proof Explorer


Theorem dfaimafn2

Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfaimafn2 FunFAdomFFA=xAF'''x

Proof

Step Hyp Ref Expression
1 dfaimafn FunFAdomFFA=y|xAF'''x=y
2 iunab xAy|F'''x=y=y|xAF'''x=y
3 1 2 eqtr4di FunFAdomFFA=xAy|F'''x=y
4 df-sn F'''x=y|y=F'''x
5 eqcom y=F'''xF'''x=y
6 5 abbii y|y=F'''x=y|F'''x=y
7 4 6 eqtri F'''x=y|F'''x=y
8 7 a1i xAF'''x=y|F'''x=y
9 8 iuneq2i xAF'''x=xAy|F'''x=y
10 3 9 eqtr4di FunFAdomFFA=xAF'''x