Metamath Proof Explorer


Theorem dfcnvrefrel2

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019)

Ref Expression
Assertion dfcnvrefrel2 CnvRefRelRRIdomR×ranRRelR

Proof

Step Hyp Ref Expression
1 df-cnvrefrel CnvRefRelRRdomR×ranRIdomR×ranRRelR
2 dfrel6 RelRRdomR×ranR=R
3 2 biimpi RelRRdomR×ranR=R
4 3 sseq1d RelRRdomR×ranRIdomR×ranRRIdomR×ranR
5 4 pm5.32ri RdomR×ranRIdomR×ranRRelRRIdomR×ranRRelR
6 1 5 bitri CnvRefRelRRIdomR×ranRRelR