Metamath Proof Explorer


Theorem dfcnvrefrel2

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019)

Ref Expression
Assertion dfcnvrefrel2 CnvRefRel R R I dom R × ran R Rel R

Proof

Step Hyp Ref Expression
1 df-cnvrefrel CnvRefRel R R dom R × ran R I dom R × ran R Rel R
2 dfrel6 Rel R R dom R × ran R = R
3 2 biimpi Rel R R dom R × ran R = R
4 3 sseq1d Rel R R dom R × ran R I dom R × ran R R I dom R × ran R
5 4 pm5.32ri R dom R × ran R I dom R × ran R Rel R R I dom R × ran R Rel R
6 1 5 bitri CnvRefRel R R I dom R × ran R Rel R