Metamath Proof Explorer


Theorem dfdif3

Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022)

Ref Expression
Assertion dfdif3 AB=xA|yBxy

Proof

Step Hyp Ref Expression
1 dfdif2 AB=xA|¬xB
2 ax6ev yy=x
3 2 biantrur ¬xByy=x¬xB
4 19.41v yy=x¬xByy=x¬xB
5 3 4 bitr4i ¬xByy=x¬xB
6 sbalex yy=x¬xByy=x¬xB
7 equcom y=xx=y
8 7 imbi1i y=x¬xBx=y¬xB
9 eleq1w x=yxByB
10 9 notbid x=y¬xB¬yB
11 10 pm5.74i x=y¬xBx=y¬yB
12 con2b x=y¬yByB¬x=y
13 df-ne xy¬x=y
14 13 bicomi ¬x=yxy
15 14 imbi2i yB¬x=yyBxy
16 11 12 15 3bitri x=y¬xByBxy
17 8 16 bitri y=x¬xByBxy
18 17 albii yy=x¬xByyBxy
19 5 6 18 3bitri ¬xByyBxy
20 df-ral yBxyyyBxy
21 19 20 bitr4i ¬xByBxy
22 21 rabbii xA|¬xB=xA|yBxy
23 1 22 eqtri AB=xA|yBxy