Metamath Proof Explorer


Theorem dfdif3

Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022) (Proof shortened by SN, 15-Aug-2025)

Ref Expression
Assertion dfdif3 A B = x A | y B x y

Proof

Step Hyp Ref Expression
1 dfdif2 A B = x A | ¬ x B
2 nelb ¬ x B y B y x
3 necom y x x y
4 3 ralbii y B y x y B x y
5 2 4 bitri ¬ x B y B x y
6 1 5 rabbieq A B = x A | y B x y