Metamath Proof Explorer


Theorem dfeldisj5

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj5 ElDisjAuAvAu=vuv=

Proof

Step Hyp Ref Expression
1 dfeldisj4 ElDisjAx*uAxu
2 inecmo2 uAvAu=vuE-1vE-1=RelE-1x*uAuE-1xRelE-1
3 relcnv RelE-1
4 3 biantru uAvAu=vuE-1vE-1=uAvAu=vuE-1vE-1=RelE-1
5 3 biantru x*uAuE-1xx*uAuE-1xRelE-1
6 2 4 5 3bitr4i uAvAu=vuE-1vE-1=x*uAuE-1x
7 eccnvep uVuE-1=u
8 7 elv uE-1=u
9 eccnvep vVvE-1=v
10 9 elv vE-1=v
11 8 10 ineq12i uE-1vE-1=uv
12 11 eqeq1i uE-1vE-1=uv=
13 12 orbi2i u=vuE-1vE-1=u=vuv=
14 13 2ralbii uAvAu=vuE-1vE-1=uAvAu=vuv=
15 brcnvep uVuE-1xxu
16 15 elv uE-1xxu
17 16 rmobii *uAuE-1x*uAxu
18 17 albii x*uAuE-1xx*uAxu
19 6 14 18 3bitr3i uAvAu=vuv=x*uAxu
20 1 19 bitr4i ElDisjAuAvAu=vuv=