Metamath Proof Explorer


Theorem dfeqvrels2

Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)

Ref Expression
Assertion dfeqvrels2 EqvRels=rRels|Idomrrr-1rrrr

Proof

Step Hyp Ref Expression
1 df-eqvrels EqvRels=RefRelsSymRelsTrRels
2 refsymrels2 RefRelsSymRels=rRels|Idomrrr-1r
3 dftrrels2 TrRels=rRels|rrr
4 2 3 ineq12i RefRelsSymRelsTrRels=rRels|Idomrrr-1rrRels|rrr
5 inrab rRels|Idomrrr-1rrRels|rrr=rRels|Idomrrr-1rrrr
6 1 4 5 3eqtri EqvRels=rRels|Idomrrr-1rrrr
7 df-3an Idomrrr-1rrrrIdomrrr-1rrrr
8 7 rabbii rRels|Idomrrr-1rrrr=rRels|Idomrrr-1rrrr
9 6 8 eqtr4i EqvRels=rRels|Idomrrr-1rrrr