Metamath Proof Explorer


Theorem dfeqvrels2

Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)

Ref Expression
Assertion dfeqvrels2 EqvRels = r Rels | I dom r r r -1 r r r r

Proof

Step Hyp Ref Expression
1 df-eqvrels EqvRels = RefRels SymRels TrRels
2 refsymrels2 RefRels SymRels = r Rels | I dom r r r -1 r
3 dftrrels2 TrRels = r Rels | r r r
4 2 3 ineq12i RefRels SymRels TrRels = r Rels | I dom r r r -1 r r Rels | r r r
5 inrab r Rels | I dom r r r -1 r r Rels | r r r = r Rels | I dom r r r -1 r r r r
6 1 4 5 3eqtri EqvRels = r Rels | I dom r r r -1 r r r r
7 df-3an I dom r r r -1 r r r r I dom r r r -1 r r r r
8 7 rabbii r Rels | I dom r r r -1 r r r r = r Rels | I dom r r r -1 r r r r
9 6 8 eqtr4i EqvRels = r Rels | I dom r r r -1 r r r r